This was in collaboration with a start-up in New Mexico called Symphony Acoustics. Downhole measurements are notoriously difficult, and this one was no exception: building a laser that could achieve an Allan variance of 10-10 at 10,000 seconds, and do it 5000 feet down a 2-inch cased drillhole. Due to the casing thickness, the maximum outer diameter of the instrument package was 38 mm, including its own casing and two concentric zones of thermal control.
This was in cooperation with Mesa Photonics of Santa Fe NM. It's part of a DOE program, an advanced deployable solar occultation spectrometer for detecting volatile plumes from clandestine uranium enrichment.
A follow-on to the single channel version. This one had to work at very much lower power, which required a new amplifier topology based on local feedback around a very low noise JFET. This was a very fruitful development, which has been used in a number of follow-on designs.
In cooperation with InView Technology. Compressive scanning is a scheme for doing image sensing with a single-element detector, without suffering the N2 speed penalty of raster scanning. It's a sort of combination of scanning and image compression—you use a digital micromirror device (DMD) to multiply the image by a series of 1-bit digital basis functions, measure the resulting photocurrent, and then invert the transform to produce a compressed image. That's not too useful in the visible, where image sensors are cheap commodity items, but in the UV and especially the shortwave IR (SWIR), image arrays are extremely expensive, so there's a need for compressive scan cameras.
Discussion on the topic here.