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polarization can be expressed in terms of circular, this should strike you as odd—there’s a

subtlety here, called topological phase, that makes it all come out right in the end.

6.2.4 An Often­Ignored Effect: The Pancharatnam­Berry Topological Phase

When light traverses a non-planar path, e.g. in two-axis scanning, articulated periscopes,

or just piping beams around your optical system, its polarization will shift. For reflec-

tion off mirrors, this isn’t too hard to see: since EEE is perpendicular to k, a mirror whose

surface normal has a component along EEE will change E. Make sure that you follow your

polarization along through your optical system, or you may wind up with a nasty surprise.

A much more subtle fact is that the same is true for any system where light travels in

a non-planar path, e.g. a fiber helix. Left and right circular polarizations have different

phase shifts through such a path, giving rise to exactly the same polarization shift we get

from following the mirrors; this effect is known as Pancharatnam’s topological phase†,

and is what accounts for the puzzling difference in the polarization behavior of linear and

circularly polarized light upon reflection that we alluded to earlier (the corresponding effect

in quantum mechanics is Berry’s phase, discovered nearly 30 years after Pancharatnam’s

almost-unnoticed work in electromagnetics). This sounds like some weird quantum field

effect, but you can measure it by using left and right hand circular polarized light going

opposite ways in a fiber interferometer‡. These polarization shifts are especially important

in moving-mirror scanning systems, where the resulting large polarization shift may be

obnoxious. Thus it’s often best to use circular polarization in scanning systems, as in the

ISICL sensor of Example 1.12.

It sounds very mysterious and everything, but really it’s just a consequence of spherical

trigonometry; the kkk vector is normal to a sphere, and EEE is tangent to the sphere throughout

the motion; depending on how you rotate kkk around on the surface, EEE may wind up pointing

anywhere. Equivalently, 2×2 rotation matrices commute, but 3×3 ones don’t.

If you follow your kkk vector around a closed loop enclosing a solid angle Ω, the relative

phase of the right and left circular polarizations gets shifted by

∆φ = 2Ω. (6.1)

A linearly-polarized beam will have its axis rotated by ∆φ . This is important in cases such

as corner cube reflectors: a hollow retroreflector makes the kkk vector describe an eighth of

a sphere (π/2 sr), so a full circuit rotates a linear polarization by 180◦. However, a retrore-

flector performs only half of a full rotation, so the polarization shift is half that, i.e. 90◦.

This is pretty useful in interferometers based on polarizing cubes, because most of the light

reflected on the first pass through the cube gets transmitted on the second pass.

Gotcha: Angle-Dependent Polarization Shifts In Metal Mirrors

Besides the geometric phase, real mirrors generally introduce a bit of ellipticity, especially

at shorter wavelengths or with poorer coatings such as protected aluminum.

†S. Pancharatnam, ‘Generalized theory of interference and its applications. Part 1. Coherent pencils’, Proc.

Indian Acad. Sci 44, 2247–2262 (1956).
‡Erna M. Frins and Wolfgang Dultz, ‘Direct observation of Berry’s topological phase by using an optical

fiber ring interferometer’, Opt. Commun. 136, 354–356 (1997)
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It can be a surprisingly large effect—up to a half wave of aberration difference between

polarizations—so it’s worth keeping track of it. Karlton Crabtree has a an excellent tutorial

on this.†

6.2.5 Orthogonal Polarizations

We often describe two polarization states as orthogonal. For linear polarizations, it just

means perpendicular, but what about circular or elliptical ones? The idea of orthogonal

polarizations is that their interference term is 0, i.e.

EEE1 ·EEE
∗

2 = 0 (6.2)

Two elliptical polarizations are thus orthogonal when their helicities are opposite, their

eccentricities equal, and their major axes perpendicular (i.e. opposite sense of rotation,

same shape, axes crossed). It’s an important point, because as we’ll see when we get to the

Jones calculus in Section 6.10.2, lossless polarization devices do not mix together orthog-

onal states—the states will change along the way, but will remain orthogonal throughout.

One example is a quarter wave plate, which turns orthogonal circular polarizations into or-

thogonal linear polarizations, but it remains true even for much less well behaved systems

such as single-mode optical fibers.

6.3 Interaction of Polarization with Materials

6.3.1 Polarizers

A polarizer allows light of one polarization to pass through it more or less unattenuated,

while absorbing or separating out the orthogonal polarization. Any effect that tends to sep-

arate light of different polarization can be used: anisotropic conductivity, Fresnel reflec-

tion, double refraction, walkoff, and the different critical angles for o- and e-rays (related

to double refraction, of course).

Polarizers are never perfectly selective, nor are they lossless; their two basic figures

of merit at a given wavelength are the loss in the allowed polarization and the open/shut

ratio of two identical polarizers (aligned versus crossed) measured with an unpolarized

source, which gives the polarization purity. The best ones achieve losses of 5% or less and

open/shut ratios of 105 or even more.

6.3.2 Birefringence

The dielectric constant ε connects the electric field EEE with the electric displacement D.

For a linear material, the most general form is a tensor relation, ε

D = εEEE. (6.3)

In isotropic materials the tensor is trivial, just ε times the identity matrix.‡ (See also Sec-

tion 4.6.1.) Tensors can be reduced to diagonal form by choosing the right coordinate axes;

†Crabtree, Karlton, Polarization-Critical Optical Systems: Important Effects and Design Techniques’,

https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/Tutorial_Paper-Crabtree.pdf.
‡Landau and Lifshitz, The Electrodynamics of Continuous Media, has a lucid treatment of wave propagation

in anisotropic media, which the following discussion draws from.


