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7 SIMPLE THIN LENS OPTICAL SYSTEMS
7.1 INTRODUCTION

7.1.1 Thin lens solution. The first two steps in designing optical systems, which will be discussed further
in Section 9, are (1) selecting lens types for the various elements, and (2) finding a first order solution
assuming thin lenses. The methods and procedures used in step (2) were developed in Section 6. In Section .
7 the optics of several thin lens optical systems will be described to jllustrate the usefulness of the paraxial
equations and to indicate the reasoning a designer uses in following step (1). With information obtainable
from only paraxial ray data, a designer can conclude many of the important features needed for a final de-
sign. There are numerous discussions in text books of simple optical systems such as the microscope and

the telescope. The following discussion, assuming that the reader has read some explanation of these sys-
tems, will concentrate on the numerical analysis. )

7.1.2 Optical systems used with the eye. The optical systems considered in this section are all used with -
the human eye. Because of this the eye is an integral part of the system and must be considered in the de-
sign. There are four basic types of lenses: (1) microscope objectives, (2) telescope objectives, (3) eyepieces .
and (4) photographic objectives. The first three are used with the human eye and systems employing these
types are discussed in Section 7.

7.2 THE SIMPLE MAGNIFIER

7.2.1 A single lens. One of the simplest of optical devices is the simple magnifier. A single positive lens
works as a magnifier because it makes an object appear to subtend a larger angle at an observer's eye than
is possible with the unaided eye. Without a magnifier, an observer can make an object appear larger only by
bringing it close to his eye. As an object is moved closer and closer to an observer's eye it is necessary
for the eye to increase its refractive power in order to continue to focus the image on the retina. There is

a minimum distance V at which the eye has increased its refractive power to its maximum capability. For
object to eye distances less than V the image will no longer be sharply focussed on the retina. For the
standard observer this distance V is approximately 10 inches or 250 mm (V is always considered positive).
Therefore, in order to make the object appear still larger, it is necessary to add refractive power to'the

eye, so that the object may in effect be brought closer. The magnifier provides the extra refractive power
required. )

7.2.2 Magnifying power. The magnifying power of a visual instrument may be defined as

size of retinal image obtained with instrument

MP size of retinal image obtained with the unaided eye

In the region of the paraxial approximation this is equivalent to the definition, MP = B/a where B equals
one half the angle subtended by the object as seen through the instrument, and @ equals one half the angle
subtended by the object as seen by the naked eye. (These particular definitions of @ and B assume that

the object and image are centered with respect to the optical axis. This is usually the case with visual instru-

ments. According to this assumption, when reference is made to "an object Yo » ' the object height is rigor-

ously 2y, .) B is called the half image field angle, and a is called the half object field angle. Magnifying
power, then, is the ratio of the field angles.

7.2.3 Diagram of a single lens magnifier. In Figure 7.1 (2) an object ?0 is shown viewed with the unaided
eye. Figure 7.1 (b) shows the same object viewed by a single lens magnifier. The eye is placed at a dis-
tance d from the lens. The object is placed in relation to the lens so that.the visual image ¥ lies tothe
left of the eye at a distance, A . (A is negative). For the eye to focus on the image, A must be numeri-
cally equal to or larger than V . The numerical formulation of this problem may be handled with simplicity
by the usual methods adequately covered in most text books. In the following analysis, it will be handled
formally using the ray trace format in order to illustrate a method of analysis which can be used for any
system, regardless of its complication.

7.2.4 Ray trace format.

'7.2.4.1 The system consists of an object plane, an entrance pupil plane, a thin lens, an aperture stop and

exit pupil, and a final image plane. Table 7.1 contains a layout of a computation sheet for this simple magni-
fier system. The data may be filled in as follows. First, all the ¢ values are zero except that of the lens.
We also know that y, = 0 and we may choose to trace a paraxial ray at any angle from the point y, = 0.
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Figure 7.1 - Diagrammatic illustration of a singlé lens magnifier.
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Object Entrance Lens Exit Pupil Image
Pupil Plane Plane Plane
Surface 0 1 2 3 4
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Table 7.1 - Computation sheet for a sim;[)le magnifier
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Theérefore, we elect tomake y, = 1. (Figure 7.1 (b) shows y; negative; this has been so done for
pictorial clanty) The system has only two physical stops, the lens and the eye pupil. One of these is the
aperture stop. To find which one, we.can image each stop in the system preceding it, and see which image
subtends the smallest angle at the base of the object, y, = 0. The image of the lens in the lens is of
magnification unity and is at the lens; hence if the size of the lens and its distance from the object is known,
the angle subtended can be found. Likewise if the eye pupil size and location is known, its image in the lens
can be determined, and the angle subtended by this image compared with the previous angle. We see, there-
fore, that which of the two stops is the aperture stop depends on the size and location of the two elements,
i.e. on the design of the system. In such systems it is usual to assume that the lens is so much larger than
the eye pupil that the latter is the aperture stop. Hence it is also the exit pupil. Therefore we canfillin d,
the distance from the lens to the aperture stop plane, and A the distance from the aperture stop plane to the
final virtual image plane. Since = 0 and uy = ugy (no refraction occurs at surface 3), it can be
concluded that ugs = uj -1/(d + A). With yz2 and u, known it is possible to calculate ujy from
equation 6-(24). Then u; 9 -1/(d + A). Also u, = uy.

[

7.2.4.2 The oblique principal ray may now be traced backward through the system from the center: of the
exit pupil. Let this go back at the angle B with the optical axis. y, is now determined as -Bd. u; and
u, are also determined. Knowing y,, y;, Vg, u, and uy, t, and t; may be computed. Since
all the spaces are now determined y and u are known on every surface for each ray.

From Equation 6-(7),

Y = Yo u:: .
Therefore,
Ve = Yo [1-¢(d+A)].
Since B
B = ik and a = - 3,0 s
Mp:-%—[1-¢(d+A)]. | (1)

7.2.5 Analysis of magnifying power equation. There are several cases of special interest which should
be noted.

a) If A = -
MP = V¢
b) X da = f = %
MP = V¢ _
c) K A = -V with d = 0
MP = 1+ V¢ .
One can see by inspection of these equations, that MP = V/ F is the minimum magnif&ing power and
MP = (V/f) + 1 isthe maximum. Hence for maximum magnifying power, the final image is at the

near point of the eye, a distance V from the eye. Therefore the eye has maximum refractive power. For
the relaxed eye, the image is at the far point; this is « for the normal eye and results in 2 minimum magni-
fying power. The relative increase in magnifying power, as the eye accommodates for smaller A , is small
and offset by the greater likelihood of eye strain. (For atypical magnifier of 1 inch focal length, the maxi-
mum magnifying power is only 10% higher than the minimum). Therefore simple magnifiers should be de-

.signed and.uséd so that the final image is at infinity, or at thefar point of the eye; .if these cases differ.
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7.3 THE MICROSCOPE

7.3.1 Limitations of a simple magnifier. It is clear from Section 7. 2.5, that for large!magnifying power,
¢ must be large, hence the focal length, f', must be small. Because the final image is to be at infinity,
the object must be at ¥; . Therefore for large magnifying power, the object must be placed very close to
the lens. By Equation 6-(22) we see that the lens surfaces must have very short radii, and therefore the di-
ameter of the lens will be small. Because it was assumed that the eye pupil was the aperture stop, for the
case of the simple magnifier, the only other stop in the system, namely the lens, is the field stop. Where-
as the aperture stop limits the bundle of rays traversing the system,E the field stop (a physical stop) limits
the field of view. Hence a small diameter magnifying lens means a small object field.
l

7.3.2 The simple microscope. A practical method of overcommg thehmxtatzons of the s1mp1e magnifier is
to use a relay lens as shown in Figure 7.2. While the object is being relayed it may also be magnified. The
magnifying power of the microscope is then the product of the lateral magnification of the objective and the
magnifying power of the eyepiece. As with the magnifier, it is advisable to adjust the microscope so that the
final virtual image is at « ; the microscope is then in afocal ad;ustment. In this case the eyepiece magni-
fying power is MP, = V/ f , and the magmfymg power of the mllcroscope may be wr1tten

MP = m ! (2)
e | ;
where m, is the lateral magnification of the objective. The focal length of the objective can, in principle ,
have any value. 1If the focal length is made long, the overall length of the system will also.be long.
l

[

|
7.3.3 Paraxial ray trace. Table 7.2 contains the paraxijal ray trace for a microscope Wlth an ob]ect1ve

focal length of 16 mm and an eyepiece focal length of 25 mm. In “order touse the objectivé lens symmetri-
cally, i.e. in order that the chief ray pass through the center of the lens, the entrance pupil is placed in
contact with the objective. The axial ray is traced from the object at an angle of 0.25. This corresponds

to the sine of the angle of the actual ray to be traced through the system. This paraxial ray then passes
through the optical system at very nearly the same heights as an actual true ray. As discussed in Section 23,
the resolving power of a microscope depends on the wavelength and a.quantity called the numerical aperture, or

N.A. The numerical aperture = ng sin U, . Since the object space has an index of n, = 1, the
Bystem, as laid out, has a numerical aperture of 0.25. The chief ray was traced through the entrance .
pupil from an ob]ect height yo = 1.0, From thls trace the exit pup11 is found to lie 28 55 to the right

of the lens (b). ’

7.3.4 Aperture stop and pupils. It is now poss1b1e to gather information about the puplls of this system

from these paraxial rays. One can read directly from the table that the radius of the exit pupil is 0.625.
Since the calculations are made in millimeters, the exit pupil is therefore 1.25 mm. In order that this

exit pupil be the frue exit pupil of the system, it is necessary to have the pupil of the observer's eye located
fairly centrally in this exit pupil plane. Since the normal eye pupil is approximately 2 mm in diameter, the
mlcroscope exit pupil will definitely be the exit pupil of the entire mmroscope - eye system. The ob;ectwe
is the aperture stop and the entrance pupil of the system.

7.3.5 The § - number. The § - number of a lens (always consxdered posmve) is defmed as f/D where D is
the diameter of the lens. It is very useful to calculate this quantity because from it oné can estimate the diffi-
culty of optically correcting the lens for image errors. Equation 6- (24) gives a relatlon between §{ and y for
a thin lens. From this equation then, assuming y = D/2, | .

f - number = 0. 5/|aul .

In Table 7.3 the f - numbers for the obJectlve and eyelens are hsted for both the axial and oblique rays.

7.3.6 Difficulties in designing the eyepiece. The lenses should have1 sufficient diameter for the smallest
f - number in each case. Therefore the objective should have an f - number of 1.82 and the eyepiece an

f - number of 1.09. Figure 7.3 (a) shows a picture of an f/1 lens. A This is an extremely fat lens and the
chief ray would strike the curved surfaces at very large angles of 1nc1dence. The large angles of incidence
introduce appreciable aberrations and the paraxial assumptions no longer hold. Hence the image at yk
would not be near the position predicted by first order theory. This 1ens is also uncorrected for color.
Since correcting for color has the effect of approximately doubling the power of the positive element if the
total power is to remain constant - because of the necessary addltmn of a negative element - one can see
that it would be out of the question to color correct this lens. Therefore, it is clear that it will not be prac-
tical to use a single lens eyepiece. Either the size of the object will ‘have to be reduced cons1derab1y, there-
by reducing uv, and hence increasing the f - number, or several lenses will have to be used for the eye-
piece.

-4




Taple 7.2 - Calculations on a simple afocal micfoscope. All lengths are in mm.
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l Figure 7.2 - The simple microscope. Lens (a) is.the relay lens.
Object Entrance Objective First Image Eyelens Exit Pupil
Plane Pupil (2) Plane ) Plane
I Surface 0 . 1 2 3 4 5
-¢ 0 ‘ 0 -0.0625 0 -0.04
l t '17.6 0 176.0 25.0 28. 55
| y 0 4.4 4.4 0 -0. 625 -0.625
| l u 0.25 . 0.25 -0.025 -0.025 0
v 1.0 0 ' 0 -10. 00 -11. 42 0
I q -0. 0568 -0. 0568 -0.0568 -0.0568 0. 400
Vg @ 60 0 60
a 0 0 -0. 02017 0 -0. 00026 z a = -0.02043
b 0 0 0 0 -0. 00476 = b= -0.00476
a TAch = 0.0327
l a Tch = 0,0076
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7.3.7 Chromatic aberrations of a simple afocal mici‘o_scope. »

|
7.3.7.1 Before deciding which of these alternatives is preferable,

SIMPLE THIN LENS OPTICAL SYSTEMS

20

Axial Ray Oblique Ray
Objective 1.82 o]
Lens
Eyelens 1.09

Table 7.3 - f - numbers of lenses shown in Table 7. 2,

lateral color for the system shown in Table 7. 2.
parallel to the axis, and w4 = 0.

6-(38), for the color surface contributio
du from Paragraph 6. 10. 2. 2 into Equation 6
matic aberrations,

and

d“k-l = a TAch

a Tch

I

dug

i

ns. When u, -1 =

fol

R, = 2.0
R, =-2.0
n =15
=20 [f7
7
(a)

i
Figure 7.3 - (a) is an §/1 single lens; (b) is an §/1. 8 achromatic doublet.

|

¢consider the calculation for axial and
Since this is an afocal system, the axial beam emerges
Under this condition, it is npt possible to use Equations 6-(37) and '
0 it is necessary to substitute the differential
-(33) and obtain the following equations for the angular chro-

. (3)

(4)
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Object Entrance Lens (a) Lens(c) Lens(b) Exit Pupil
Plane Pupil Objective Plane
Plane
Surface 0 ] 1 2 3 4 5
-0 0 0 -0.0625 -0. 02662 -0. 06662 0
t 17.6 0 151 30.02 8.571
y 0 4.4 4.4 0.625 -0. 625 -0.625
u 0.25 0.25 -0.025 -0.04164 0
i
y 1.0 0 0 -8.580 -3.428 0.
a -0.0568 -0.0568 -0.0568 0.1716 0. 400
Ve o © © 60 60 60
a 0 0 -0.02017 -0.00017 -0. 00043 > a=-0.0208
b 0 0 0 0.00238 -0.00238 Zb=0
a TAch 0.0332
a Tch 0

Table 7.4 - Calculations on an afocal microscope with a double lens eyepiece. All lengths are in mm.,

These equations are analogous to Equations 6~(37) and 6-(38). The results show that the simple microscope
is afflicted with 0.0327 radians of axial color and 0.0076 radians of lateral color. Almost all the axial color
is due to the objective. The lateral color is due entirely to the eyelens. The normal observer can detect as
little as 0.0003 radians of color fringing assuming that the minimum angle of resolution is about 1' of arc.

It is then clear that both the axial and lateral color exceed noticeable amounts of chromatic aberration.

7.3.7.2 The objective lens can be corrected for axial color by making it a doublet. Equations 6-(44) and
6-(45) are used to compute the powers of the separate components. Figure 7.3 (b) showsan f = 10
objective with an f - number of 1.82. It turns out that these curves are again too sharp and the monochro-
matic aberrations will be difficult to correct. * In order to correct the monochromatic aberrations then, it

is necessary to flatten the surfaces by dividing the lens into two doublets, each working at §/3.64. To do
this we divide the entire |Au].= 0.275 intotwo equal parts, each of 0.1375. Each doublet will now work
at the same f - number. This value of the f - nnmber (= 0.5 / JAu} ) will not necessarily equal the value
for an infinite object ( = f'/D) .

7.3.7.3 The chromatic aberration in the eyelens can be corrected in the same way by splitting this lens into

two lenses each working at f/2.18 and then by achromatizing each part. There is, however, ancther method
which is sometimes used in eyepiece design. A single positive lens may be placed in front of the image plane
3 and adjusted to help refract the chief ray. For suchalens y and y will have opposite signs so accord-

. ing to Equation 6-(41) the lens should give a positive lateral color contribution. A lens such as this has been

worked out in Table 7.4. The procedure for designing this system was as follows. The extra lens (c) was
inserted to the left of the image plane at a position where yg - = 0.625, the same value as the final height
of the axial ray but of opposite sign. The chief ray was then traced to the (c) lens intersecting it at

y = - 8.580.

7.3.7.4 Since this extra lens is to be used, it should help bend the chief ray. In Table 7. 2 the chief

ray was bent from -0.0568 to 0.400 by the (b) lens, a total bending of 0.4568 . With the (c) lens added, the

(b) and (c) lenses should each bend the chief ray by 0.2284. Therefore Uy between the (c) and (b)

lenses should be 0. 1716. This determines ¢3 , the power of the (c) lens. With ¢3 known, ug is

determined and then t3 is setsothat y4 = -0.625. Thus ¢4 is defined. Now the lateral color

contribution of a thin lens is proportional to yy¢/v . y¢ is equal to the bending " |Au | expenenced by

the chief ray. By making the (b) and (c) lenses refract the chief ray equally and by making y5 = 4{
he

the lateral color contributions of the (b) and (c) lenses exactly cancel each other since the v- values are
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same. The axial color of the system is only slightly more under-coxfrected than the original system in
Table 7.2. This chromatic aberration can be eliminated completely by introducing over-correction in the
objective lens (a).

7.3.8 Additional effects of adding a field lens.

7.3.8.1 Lens (c) is referred to as a field lens of the eyepiece. (The introduction of a lens near the position
of the image due to the objective increases the field of view.) This extra lens (c) has helped the system
significantly. The (b) and (c) lenses are f/2.18 now and are far more reascnable lenses. There is at this
point sufficient reason to expect that this microscope could be corrected to give good imagery. In Section 8
it will be shown that the monochromatic aberrations at an object height of Yo = 1 are rather large, so
that the final optical design will probably have to have a smaller object field. :

i | i . ‘ .
7.3.8.2 Tt should also be noted that the introduction of the (c) lens caused a marked reduction (by a factor
of 3) in the distance beiween the eyelens and the exit pupil. In Table 7.4 this distance is only 8. 57 milli-
meters. This distance, called the eye relief, is too short for comfortable viewing, so some other arrange-
ment of lenses should be found. Without introducing a serious amount of lateral color the (c) lens could be
designed with less power. The chief ray would then strike the (b) lens at a larger aperture resulting in an
increased distance to the exit pupil.. With an eyepiece of this type, the lateral and axial color for the object
is fully corrected. However the eyepiece is not color corrected for the plane between the two lenses (b) and’
(c) where an intermediate image is formed. If cross hairs, or a reticle, is placed in this position it is in
effect viewed only by the single eyelens. The reticle will be imaged with lateral color since the single lens
ig not achromatized. I a reticle is to be used, it is advisable to use an eyepiece that is also color corrected
for the intermediate image plane. ' ; ,

} |

| | . |
7.4.1 General. A telescope may be considered as a special cagse of the microscope, with this slight differ-
ence. In the microscope, one compares the visual angle subtended by the image, as viewed through the
instrument, with the visual angle subtended by the object at the unaided eye. It is assumed that the observer
can place the object at the distance V from the eye. In the telescope it is assumed that the object is in~
accessible to the observer. Therefore, in a telescope one compares the visual angles, assuming the ob-
server is always at a fixed distance with respect to the object. This is illustrated in Figure 7.4,

7.4 THE TELESCOPE

7.4.2 Magnifying power. An object of height y, is located a distance L from an observer. (L is always
considered to be positive.) The angle a subtended by the object is -y o /L . With the instrument in place,.
the object is at a distance of z from the first focal point of the objective. A ray from the top of the object,
Yo , passing through the f{irst focal point of the objective strikes the objective at a height y; = -y, fo/z.
This ray then is parallel to the optical axis until it strikes the eyepiece. It then refracts to the second focal
point of the eyepiece at an angle with the axis of B = (y, /2)(f,/f.). If the eyepiece is adjusted so that

A = o, orif the eye is located at the second focal point of the eyellens, then B is the apparent angle sub-
tended by the object. Then, ;
fo L L ' |
MP = - — = m, [ - : 5
e z 0 f'e I : ( )

This equation actually applies to the microscope by making L = V ¥ I becomes Véry large as it does
for most applications in which telescopes are used, then L/z approaches 1 and, MP = - f_/f', .
This ig the formula usually given for a telescope. At a value of L where L/z is not unity, the MP is in-
creased. Thus it is possible to obtain 2 magnifying power greater than unity even if f, = f, . This

makes an interesting optical device. It has unit MP for objects at infinity but greater than unit MP for
objects at finite distances. ’ i )

7.4.3 Objective and eyepiece design. The optics of the objective and eyepiece for the telescope are similar
to that of the microscope. The entrance pupil is usually placed at the objective. The eyepiece is usually
split into two or more lenses in order to correct for the lateral color, The extra lenses also allow for a
wider field of view than one could achieve with a single lens. “

7.5 OPTICAL RELAY SYSTEMS. PERISCOPES

7.5.1 Image orientation. , ) l

7.5.1.1 In the case of the afocal magnifier, the expression for the l\trIP is v/f . Since V is 'alwéys con-

'
i

|
i
i
)
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Figure 7.4. The optics of a simple telescope

sidered to be a positive number, the formula indicates that the MP is positive for a positive lens. Pos1-

tive MP means that the virtual image is in the same orientation as the object.

7.5.1.2 Negative MP or negative magnification means that the image yy is the negative of the object y, ,
in other words the object is inverted; if the optical system is a centered spherical optical system x i will be

the negative of x, . This means that the object Yo _ appears as Xy . Or aletter R
l Xo ‘
Yx

will appear as ¥ . The image is said to.be inverted but right handed. This means it is upside down but
readable. It appears as a normal R by turning the paper through 180° in its plane.

7.5.1.3 An erect, left-handed image, such as occurs in plane mirrors, would appear as 7 . All left-
handed images, whether erect or inverted, are unreadable by rotation in the plane only. Left-handed images
are sometimes referred to as perverted images. Also see Section 13.

7.5.2 Image inversion for microscopes and telescopes. From Equations (2) and (5) it is seen that a simple
microscope and telescope give a negative MP because m, for an objective is negative. Therefore, these
instruments provide a right-handed inverted image. In the microscope it seldom matters if the object is in-
verted, but in telescopes it is very disturbing to see turned upside down, objects which we are used to see-
ing erect. Therefore, for telescopes, some means for erecting the image is usually provided. This can be
done using prisms or extra lenses. The use of prisms will be described in Section 13. A brief analysis of
methods of image erection by lenses will be discussed in the next paragraph.

7.5.3 Image erection by lenses. It is possible to use a second objective in a microscope or telescope to
re-image the first image before it is viewed by the eyepiece. This is illustrated in Flgure 7.5. The magni-
fying power for such a system is given by the expression, MP = m; m, L/ f . This procedure
can, of course, be carried on with several re-imaging stages if it is desirable to have a long system as in
periscopic designs. Since L/fe is positive, and each m due to the relaying objectives is negative, it
is clear then that if there are an odd number of real images, the MP is negative, while for an even number
of real images the MP is positive. A positive overall MP means the image is erect and right-handed.

7.5.4 Field lenses for perlscopes. Inspection of Figure 7.5 shows that the size of the object which may
be seen through the instrument is definitely limited by the size and permissible f - number of the second

7-9
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Figure 7.5 - An optical relay system or periscope.
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objective. The field of view can be increased significantly by introducing extra lenses to help refract the
chief ray. This is the same situation described with the eyepiece in Table 7.4. Extra lenses can be intro-
duced at the position of the objective or, if it is desirable to keep the diameter of the system small, the
extra lenses can be added near the intermediate images. If the lenses are added near the intermediate
images, and therefore referred to as field lenses, they act principally on the chief rays and their primary
purpose is to help increase the field of view. TFigure 7. 6 shows an erecting telescope using field lenses to
help increase the field of view.

7.5.5 Position of the aperture stop. The drawing (Figure 7.6) indicates that the first objective is the aper-
ture stop. As drawn, the second-objective (relay lens) is larger in diameter than necessary. It could be re-
duced until the axial ray passed through the margin of the lens, as it does at the first objective. I the di-
ameter of the relay lens were further reduced, this lens would become the aperture stop and the first objec-
tive would be too large. In practice the diameters are adjusted so that both objectives are aperture stops.

7.6 THE GALILEAN TELESCOPE

7.6.1 Use of negative eyepiece. In the telescope with f, z |fe ] itis possible to have a positive or
negative focal length eyepiece. If the eyepiece focal length is negative, Equation (5) shows that the MP is
positive. The image would therefore be erect. Such a system has very interesting possibilities. A sketch
of a telescope of this type is shown in Figure 7.7.

7.6.2 Analysis of the simple Galilean telescope.

7.6.2.1 The exit pupil and aperture stop of this system is usually the pupil of the eye. The entrance pupil
is actually located behind the observer's eye, and the size of the objective determines the size of the field
of view. The objective is therefore the field stop. A system of this type is worked out in Table 7.5. The
table shows the sizes and positions of the entrance and exit pupils. The object field of view {(sometimes
called the real field) - B¢,/ 9, depends on B. In order to obtain an image field of view (sometimes
called the apparent field) of 8, the y, onthe objective lens must be,

¥y, = B [MPd—tz ]
Therefore, for a given diameter of objective lens, the field of view is determined.

7.6.2.2 Forthecaseof d = 0, wehave yg = - Bty . Since fo /2y2 = (f - number), at
which the objective is working for the chief ray,

v

fo

2t, (f - npumber),,

B = -

and
_ B fo
@ = "MP T ~ ZMPt, (- number),

For MP large compared to unity, the focal length of the objective is large compared to the focal Iengt}i of
the eyepiece. Assuming that f, + fe = tz canbe replacedby f, , we have
B = 3 (# - number),

and

1
@ = MP2(f - number), -

These equations show that for a large MP the field of view can be made large only by decreasing (f - number),.
For example, if MP = 10, then @ = 0.05 radian if the objective is /1. An f/1 lens is very diffi-
cult to make. The usual doublet achromat would have only an f/3 aperture. For such a doublet objective

a = 0.017 radian or 0,95°. Then B = 9.5°, which is a very small apparent field of view.
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8 ABERRATION ANALYSIS AND THIRD ORDER THEORY
8.1 SIGNIFICANCE OF RAY TRACE DATA

8.1.1 First order system.

8.1.1.1 In Sections 5, 6, and 7, formulae and techniques were presented to enable the designer to set upa
first order optical system. As an aid in arriving at a final first order solution, it is customary to trace two
paraxial rays. One of these starts from an object point on the optical axis and heads toward the tentative

edge of the entrance pupil. The other ray starts from an object point at the tentative edge of the field and
heads toward the tentative center of the entrance pupil.

8.1.1.2 The data from these two rays may be used to determine the trace of any other paraxial ray through
the system. The magnification, focal length, and chromatic aberration may be calculated. The planes of the
paraxial image, entrance pupil, aperture stop, exit pupil, and field stop may be finally located, and the sizes
of the pupils and stops can be finally determined. The f- number and fields of view can be calculated.” - )

8.1.1.3 The calculation of the above characteristics of a first order solution has already been discussed.
Additional calculations using paraxial ray trace data will be given later in this section where the aberrations
of a system will be analyzed, and a third order theory will be developed which will proviae understanding of
the sources of image errors and suggest methods for correcting these errors.

8.1.2 Skew ray trace. After a first order system has been set up, skew and meridional rays are traced by
the methods discussed in Section 5. This tracing of skew rays provides the basic method of investigating lens
performance. The paraxial image and the entrance pupil furnish excellent reference planes which are used
in the interpretation of non-paraxial ray trace data. ‘ :

8.2 THE SPOT DIAGRAM

8.2.1 Representation of ray trace data. One way to make a graphical summation of ray trace data is by
means of a gpot diagram. Such a diagram is a plot of the intersection coordinates in the reference planes
of rays traced through the lens or system from a single object point. The two reference planes usually
chosen are the entrance pupil plane and the paraxial image plane. The rays traced from the object point
are usually chosen s0 as to form a uniform pattern of intersection with the entrance pupil plane while the -
resulting image is represented by the ray intersections in the paraxial image plane. Figures 8.1 (a) and
8.1 ( b) show typical spot diagrams of this type for rays traced from an object point (Object distance not
specified) which lies in the YZ (meridional) plane at coordinates X, = 0 and Y, = anarbitrary
value. Thus, the twelve spots at X; = 0 in Figure 8.1 (a ) represent meridional rays; all others are
skew rays. In Figure 8.1 (b ), the meridional rays areat Xyi = 0. There is a one to one correspon-
dence between the spots in the two diagrams. In general, the spots at large values of %, correspond to
the spots at large Xk . The Yy axis is an axis of symmetry because the ¥; axis is an axis of
symmetry.

8.2.2 Ray distribution in the entrance pupil. The shape of the entrance pupil may be found with sufficient
accuracy for most applications from paraxial ray tracing by the method described in Section 6. With auto-
matic high speed computers it is possible to trace a regular grid of rays through the system. I any ray
does not pass through every clear aperture the ray is rejected. With a computer program of this type, the
shape of the vignetted aperture is automatically found as the boundary of the non-rejected rays.

8.2.3 Ray distribution in the image plane.

8.2.3.1 The spot diagram shown in Figure 8.1 ( b) is extremely useful to a designer in evaluating a system.-
The diagram indicates how well the lens concentrates the energy from the object point into an image point.
One can count the number of points in concentriec circles in the image plane and obtain what is called an
energy distribution curve. In Figure 8.1 ( a) there are 192 points in the entrance pupil. If it is assumed
fhat each point represents an equal amount of energy, a given point is equivalent to 1 / 192 of the total energy
from the object point passing through the aperture. Now by drawing concentric cireles around what appears
to be the center of concentration of spots, and counting the number of spots within each circle one obtains the
total energy as a function of (circular) image size. Figure 8.2 is a plot of percent energy versus image size
for the spot diagram shown in Figure 8.1 (b). In a theoretically perfect geometrical image all the spots
would be concentrated at a point. However, in the case of the image due to a perfect optical system, the
geometrical image is only an approximation; the actual image formed would be larger than a point due to
diffraction effects. '
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8.2.3.2 The spot diagram is useful in evaluating the image performance of a lens but it gives little insight to
a designer as to why an image is spread out. In making a spot diagram, no attempt is usually made to identify
each ray; therefore the designer usually has no means of visualizing what happens to the ray as it passes
through the lens. Of course, it is perfectly possible to program the computer so that each ray in Figure 8.1

( b) is identified with a ray in Figure 8.1 ( a ), but with the large number of rays usually chosen for energy
distribution representation, this would be unnecessarily complex. Instead, in order to understand the reason
for image deformation, it is common practice to trace only a few selected rays through the aperture and plot
the data in a different manner. -

8.3 MERIDIONAL AND SKEW FANS
8.3.1 General method.

8.3.1.1 Ingtead of using spot diagrams and energy distribution functions, the ray trace data usually may be
more conveniently analyzed by the method of meridional and skew ray fans. In using this method a common
practice is to trace from a selected object point inthe YZ plane, five to seven meridional rays (rays ly-
ing inthe YZ plane) through the system. These rays, called the meridional ray fan, are chosen to inter-
sect the vignetted entrance pupil in a nearly uniform spread, with upper and lower extremes (the rim rays)
as close as possible to the respective vignetted pupil limits. See Figure 8.3. One of these rays is chosen
to intersect the entrance pupilat X; = 0, Y; = 0 andthus, by definition, is the chief ray. The
angle between the chief ray from the given object point and the optical axis is used to identify the meridional
ray fan and its associated skew ray fan. The latter is constructed by tracing three to five rays from the
same object point, which enter the vignetted entrance pupil at the intersection of the pupil and the X2
plane, i.e., at Y3y = 0. Rays having positive X values only are needed since the object point lies in
the meridional plane and the system is therefore symmetrical about the Y Z plane. On the other hand,
since the object point is not necessarily on the optical axis, rays above and below the Z axis are nof sym-
metrical, sothat rays must be traced having both positive and negative Y values at the entrance pupil plane.

8.3.1.2 Since they lie in a plane throughout their passage through the system, the behavior of the meridi-
onal rays can be well understood by making a plot of the coordinates of each ray intercept in the image plane
( Yy ) versus the corresponding ray intercept in the entrance pupil plane ( Y, ). This, in effect, is a
similar but much more accurate presentation of the ray height data which could be obtained through graphi-
cal ray tracing. .

8.3.1.3 Skew rays, on the other hand, do not usually remain in a single plane during their passage through
the system. Thus, even though we have simplified the problem by choosing only those that intersect the
entrance pupil plane on the X, axis (Yl = 0), they will normally have both X and Y coordinates
in the image plane. Thus, for skew rays, it is necessary to make two types of plots: X, versus Xy
and Yy versus X 1 For perfect geometrical imagery, these plots would be straight lines of zero slope.

8.3.2 Illustrative example. In the following paragraphs, the arrangement and interpretation of these three
curves will be discussed in defail. The example to be used will employ the same lens as shown in Table 6.7,
except that in the table, the entrance pupil plane was not included, therefore surface 1 is the first lens sur-
face. However, in the following discussions, surface 1 will be the entrance pupil plane, surface 2 the
first lens surface, and so on. This is illustrated in Figure 8.4, which is drawn to scale from Table 6.7.
The lens is a typical photographic Taylor triplet. The object surface for the lens is at infinity; the entrance
pupil plane is located 2.2 cms to the right of the first surface of the lens. Rays representing fans of obliqui-
ties of 0°, 10°, 15°, and 20° have been traced into the system. (Note: with the object af infinity, the term
"fan" is somewhat of a misnomer since all rays from a given object point are parallel, a situation which
would not exist if the object were at a finite distance). The diagram shows the path of the extreme upper and
lower rays for field angles of 10° and 20°. The upper rim ray at 0° is also shown; the lower is similar by
symmetry. Notice how the upper and lower rays at 10° and 20° do not pass through the edge of the aperture

. stop. This is because the designer decided to vignette the oblique rays in order to eliminate some badly

aberrated rays. The back focal length (BFL) is the distance between the last surface of the last element
(surface 7) and the second focal point. Table 8.1 gives the numerical values for this lens.

8.4 USE OF THIRD ORDER THEORY IN ABERRATION ANALYSIS

8.4.1 Ray trace data. The mxmgri_cal data used in the following discussions are the results of paraxial,
meridional and skew ray traces for the lens shown in Table 8.1 and Figure 8.4. This lens, with very
slightly different v - number, was given in Tables 6.6 and 6.7.

8.4.2 Analysis of data. The curves of ray trace data will be plotted and analyzed in a manner that will be
helpful to thé designer trying to minimize the aberrations. The plots and analyses will make use of the third
order theory to investigate the third order aberrations which, as explained in S ection 5.11. 3 are the first
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Figure 8.4 - Sample lens used for numerical analysis.

Surface Radius | Thickness np . v-no,
2 39. 55
6.0 1.620 60.3
3 -678.43
10.654 1.0
4 ~-50.15 "
1.5 1.621 36.2
5 38.50
11,369 1.0
6 197.43
6.0 1.620 60.3
Vi -40.67 -
Table 8.1 - Numerical values for lens in Figure 8. 4.

All lengths in millimeters, The numerical !
values are exact except for the radii. Exact

curvatures are given in Table 8. 2.
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approximations to the aberrations. The method of plotting differs from that described in Section 8.3 in that
only the essential information is shown. That is the difference in the paraxial plane intercepts for the chief
ray and the other rays of the fans is plotted since it is this difference, or lack of coincidence, which the de-
signer is trying to overcome.

8.5 THE 0° IMAGE IN D LIGHT

8.5.1 The 0° image polynomial.

8.5.1.1 The image of an axial object point at infinity is studied by tracing three meridional rays with K, = 0,
Ls = 0, My = 1 atvaluesof Yy = 1.5, 1.0 and 0.5. For meridional rays from an axial object
point, negative values of Y; are symmetrical with the positive values. The results are plotted and en-
circled in Figure 8.5. The vertical scale is labelled (Y, - ¥ ). Yy is the height of the chief ray

(Y, = 0) onthefinal paraxial (yy = 0) image plane. For these axialrays Y, = 0. The
circled points, connected by the full curve, can be fitted fairly accurately to a power series of the form.

— 3 5 -
Y, - Y, = b, Y, +b; Y7+ by V.74 0(7). (1)

The letters by , bs , etc. are called the spherical aberration coefficients. The term O (7) stands for
all the terms of order 7 and above, as explained in Paragraph 5. 5. 2.3. ’ )

8.5.1.2 When ray data are plotted in this manner the slope of a line drawn between any two ray points on the
curve is proportional to the longitudinal distance from the paraxial image plane to the plane where the two
rays focus. That this is true, can be seen from Figure 8.6. This diagram shows two actual rays converging
towards the image surface. The image surface, where the two rays focus, will be calledthe k + .1 sur-
face. The paraxial image plane is called the kth surface. By placing the paraxial image plane to the left
of the intersections of the optical axis with rays (a) and (b), the two Y) values are positive. Such a dia-
gram would not represent the physical situation of a single converging lens, because for that case, the par-
axial image plane is to the right of the intersection points of the optical axis with non-paraxial rays. The
situation represented in Figure 8.6 could be attained, for example, by the forming of an image by a diverging
system of an unaberrated, virtual object. :

8.5.1.3 From the diagram we have

Yia = Ygra -tk tan Uggya
and
Yip, = Ygenpp -tk tan Ugepp
Since Y(k+1)a = Yaunb , subtraction gives
- Yia - Yip
an U-na - tan Uk gyp

This equation and Figure 8.6 apply to two non-paraxial rays. It will be assumed that the following relation
is a valid approximation for either of these rays; namely

Yy _ V1
tan Uy ug-1

-

If these rays were paraxial, this relation would be exact; assuming it to hold approximately for non-paraxial
rays, there results '

. %a Vb
tan U(k—l)a - tan U(k—l)b Vi / gy V1 /upy
and finally,
I /1 Yip -~ Yo
t S =) @
Uk.1 b - 1a
When the object point is at infinity, then - y; /u,; = f . Equation (2) is only an approximation

for non-paraxial rays. But at worst it gives the order of magnitude of ty ; this is all that is needed for
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third order design procedure.

8.5.1.4 Since the slope of the line connecting any two points onthe (Y, - ¥i ) versus ¥Y; curveis
AYy / AY; , this slope is proportional to the distance from the paraxial image plane to the plane of focus
for the two rays. As the two rays approach each other, the two points on the curve do likewise, and the slope
of the chord approaches the slope of the curve. Hence the slope of the curve at any point is proportional to the
distance from the paraxial image plane to the plane of focus for infinitely close rays. From ray_trace data
resulting in Figure 8.5, and from paraxial ray trace data giving Y3 /u u, , , weare able to determine the shift,
( ty ) of the image plane from the paraxial image plane.

8.5.1.5 Now since the ray data shown in Figure 8.5 was obtained in the paraxial image plane the slope of

the curve must be zero at Y, = 0. Therefore b, will be zero in Equation (1). The presence of a
linear term indicated by a slope different from zero af Y; = 0, means that the paraxial rays are.not
focused . in the final image plane upon which the ray heights are ealculated. This linear term in Equation (1)
can be eliminated by shifting the plane upon which the ray heights are calculated. When this has been done,
50 that the slope of the curve is zeroat Y; =. 0, and the linear term is absent, any further deviation, '
(Y, - Yk ) # 0, indicates the presence of spherical aberration. Therefore, the first approximation
to the spherical aberratlon, writtenas (Y, - Yk ), varies as the cube of the entrance pupil radius. This °
part of the spherical aberration, the third order spherical aberration, would vary with Y; as shown by the
dashed line in Figure 8.5. »

8.5.1.6 Because the slope of the line between any two points on the curve is proportional tothe t; for the
two rays considered, Figure 8.5 shows that the rays tracedat ¥Y; = 0.5 and 1.0 are focused closer
to the lens than the paraxial image plane; while the ray at Yy = 1.5 is focused almost exactly on the
paraxial image plane. In this system, the third order coefficient, bg , is negative and the lens is said

to be undercorrected for the third order spherical aberration. It is called undercorrected spherical aberra-
tion because a single positive lens has spherical aberration of this sign. (See Paragraph 6. 10.5. 1). The
coefficient, by , is called the fifth order coefficient. In this case it is positive because the full curve
(Figure 8. b) is between the third order curve and Y, - Y, = 0 ; hence the fifth order term [Equa-
tion{1)] has a sign opposite to that of the third order term. The fifth order coefficient is said to be over-
corrected.

8.5.2 The third order aberration coefficient.

8.5.2.1 Now a truly remarkable feature of optical systems is that the coefficient, by , may be compufed
from axial paraxial ray data. This is done by calculating -B; , the third order spherical aberration sur-
face contribution, at each surface in the optical system. Then, : :

1 j=k-1
= - = B; *
b3 [ 2(ngy uy ) y® ] Lo B

j=1"
where y; is the height of the axial paraxial ray in the entrance pupil plane and up_q is the final
angle with the optical axis for this ray. Therefore, since Yk = 0 for 0° obliquity, the third order
approximation for Yy Iis, .
3 .
T )
Y = - — . e 3
31k 2(nk_1 Uy _q ) yl ) ( )

8.5.2.2 Bj is calculated from the axial paraxial ray data for each surface with the following formulae
B = Si?, (4

and

€5}
"

oy (";1 - 1) (uw+1). )

In Table 8.2, Bj is calculated for each surface of the sample lens being studied. This is the same lens

¥ Up to this point in the text an attempt has been made’to derive the equations, or to indicate specifically how they may
be derived. This practice will no longer be followed; thus, equations may be presented without proof. To do otherwise
N would necessitate lengthy and complex departures from the main train of thought.
sy

In latér sections the symbol 5 will be used to indicate the summation of all surface contributions. The proper
summation limits will be eliminated.
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illugtrated in Table 6.7. The doited curve in Figure 8.5 shows the third order curve as predicted by Equa-
tion (3). One notes thatat ¥; = 1.5, the dotted curve passes through the point Y, = - 0.0214.
Notice also how the third order curve follows the true aberration curve very closely outto Y; = 0.75.

8.5.2.3 Returning to Equation (1) it follows that by = -~ 0.0214/ y13 = - 0.006341. Since the actual
ray tracedat ¥y = 1.5 strikes the final image plane at Yy = 0 it.is possible to compute that ’
b = 0.002818 if it is assumedthat O(7) = 0. By using Equation (1) thenat Y; = 1.0, Y
should equal - 0.00352. The actual ray traced point comes out at Yy = - 0.0041. This difference,
0.0006, is small compared to the total spherical aberration - 0.0041. This means that the spherical aber-
ration curve shown in Figure 8.5 may be approximately obtained by calculating the third order coefficient

bg from axial paraxial ray data, and tracing one non-paraxial ray. On the other hand, the curve can also
be obtained by tracing two non-paraxial rays, and calculating bg and by . Since the third order co-
efficient calculation depends on the individual surface contributions, it helps the designer see the source of
the aberrations. For the example shown in Table 8.2, we see that the first two, and the last two surfaces .
of the lens give negative spherical aberration. The two surfaces of the central negative element provide all -
the positive or over-correction. The contribution on surface number four of the lens has the largest positive
value. This coupled with the large angle of incidence on this surface is the main reason that the fifth order
coefficient is positive. If one wanted to reduce the fifth order coefficient, it would be necessary to find a
solution with a smaller angle of incidence on this surface or a smaller spherical aberration coefficient. If
the fifth order coefficient were reduced, the total aberration (full curve) will be closer to the third order. )
The maximum under-correction, which now occurs at about Y; = 1.1, would increase and would occur
at a larger Y3 . Such a lens would exhibit an increased zonal spherical aberration. The point of zero
aberration, nowat ¥; = 1.5, would increase towards larger values of Y; , so that the lens could be
used at a larger aperture. :

8.5.2.4 The Yy versus Y; curves shown in Figure 8.5 were obtained in D light. Similar calcula-
tions could be made in F and C light. The value of bg can vary with wavelength, and since the plot is
made for the paraxial focal plane in D light, the F and C paraxial rays will focus farther from the lens

by approximately f'/2200. Therefore b; for F and C light, if we have a true (F - C) achromat, will
be positive and equal to 1/2200. On this scale this is a negligible amount of aberration amounting to one-tenth
of the zonal aberration, 0.0041. The F and C curves, corresponding to Figure 8.5, would have a positive
slopeat Y; = 0., .

8.5.3 The Seidel spherical aberration.

8.5.3.1 Egquations (3), (4) and (5) give the calculation of 3Y, , the third order approximation to Yy -
Because Yy = 0, and hence for an unaberrated image point Y, = 0, 3Yy is the third order approxi- |
mation to the spherical aberration, measured in a plane perpendicular to the optical axis. Hence, it is some-
times referred to as the transverse spherical aberration. In the following section the aberrations of an off-axis
image point will also be expressed as transverse aberrations.

8.5.3.2 Another measure of spherical aberration, called the longitudinal spherical aberration, is the distance
along the optical axis between the paraxial image plane and the non-paraxial ray. The third order approxima-
tion to the longitudinal spherical aberration, referred to as the Seidel longitudinal spherical aberration, is
numerically equal to ¥y / up_; . Hence, from an expression for the Seidel aberration, Equations (3),

(4) and (5) readily follow. ‘

8.6 IMAGERY FOR AN OFF-AXIS OBJECT POINT

8.6.1 The oblique image polynomial.

8.6.1.1 The solid curve in Figure 8.7 ( a ) is a plot of meridional rays traced through the sample lens at 10°
( K, = 0, L, = 0.1736 ) . The coordinates for the entering rays on the entrance pupil extend from

Y; = L35 to Yy = - 1.35. The vertical scale is again (Y, - Y ). The curve represents the
displacement between the ray heights and the chief ray height in the paraxial image plane. This curve may
also be represented by a power series. The power series can be expressed in different ways, but the follow-
ing uses the well known Seidel third order coefficients. The polynomial can be expressed for any ray co-
ordinate (¥; , Xj ) in the entrance pupil for any object height Y, (X, = 0). Hence the series
are sufficiently general so that they can be used with skew rays. There are two equations, one for ( Y - Y )},

8-9
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and the other for Xy . X is always zero. These equations are

— 1 5 2 gy W
Yk - Y, = - 2(“k—1uk-—15 | B(Yl + )(Il) y13 +
|
2 2 = i - 2
3Y X Y . Y Y
o SLEHT () | 5ae s peny B (B ) Jow, ©
Y1 Yo : Y1 \Yo
and ‘ '
1 2 2, Xy
Xk = - Z(nk-l uk"l) [ZB(Y]' * Xl ) y13 +

SF _ml_}‘l).(%)+ Z(C + p@?)(f_f) (?_0)2]+0(5)- '(7)

|

Y1
8.6.1.2 The expressions ZB, ZF, ZC and ZP are the sums of the third order‘tsurface contributions

for gpherical aberration, coma, astlgmatlsm and Petzval curvature. { C must not be confused with ¢ , the )

curvature of a surface. ) The terms, y; , ¥, , and np q ujg. are the data from the two paraxial
rays traced through the system. Y, is the object point height. 31(‘

al ray in the entrance pupil. If the object pomt is at infinity, as it 1s in the example béing described, then
Y, /Yo shouldbe replacedby (tan¥U, )/ u, or L,/ M, uo .

8.6.1.3 If ZB, ZF, ZC and ZP are known, Equatlons (6) and (7) can be used to predlct the position
coordinates of any ray in the image surface corresponding to a glven point in the ob]ect surface. The accu-
racy of the prediction depends on the magnitude of aberrations hlgher than third order. _According to the

first order theory, the chief ray should strike the image plane at Y = Y m if 'Y, isf{inite, or at
Yk = f tan U , if the object is at infinity. However, the actual chief ray is d1$p1aced from the ideal
image point due to a fifth aberration, distortion. There is alsoa polynom1a1 to express this displacement.
- = __=E Y, '
- = - _ ) 8
(%, - %, m) AT (yo? + 00, e
| :
where ZE is the third order contribution for distortion. Equation (8) can be 1ncluded in Equatlon (6) but it
was not because it is somewhat easier to plot ( ¥y - _}_{ ) as has been done in Figure 8.7. The frac-
tional distortion which is defined by the ratio ( Yk - Y, m VY Y, m may be wrltten to read as follows,
— I -
Y - Y, m ZE ¥, 0\ 2
fractional distortion' = -—E——2° =~ (-_—°-) .
Y, m 22 Yo :

| ‘ : o
Note that the fractional distortion varies with the square of the object height ratio ( Y, /7, Yo ) In Sec-

tion 8.7 the method for calculating B, F, C, E and P will be described. The actual calculatlons for

the sample problem are shown in Table 8. 2.

8.6.2 Examples of third order aberrations.

8.6.2.1 The third order ray predictions for (¥y - Yy ) and- "Xy are shown by}the dotted curves in
Figures 8.5 , 8.7 and 8.8 . The solid curves show the actual coordinates for rays traced through the
same entrance pupil points. Figures 8.7 (a), (b) and ( ¢ ) are plots for fans of meridional rays at 10°,

15° and 20° respectively. Figures 8.8 (a2 ) and 8.8 ( b) show plots for skew fans with ¥, = 0. F1gure

8.9 is a plot of the fractional distortion of the lens as a function of the object field angle. The results show
that the actual distortion is slightly more positive than pred1cted from the third order theory.

8.6.2.2 Finally in Figure 8. 10 the slopes of all the curves at the chief ray are mdlcated. (Slopes are pro-
portional to ty ). Curves of this type are called field curves. The points on the curves show the longi-
tudinal distances from the paraxial image plane to the focus of rays close to the chief ray. The three third

order field curves were found from surface contributions. The remaining two, the tangentlal field curve and

the sagittal field curve, were obtained by graphically determining the slope of the merldlonal and skew ray
plots respectively. These are shown in Figure 8.7, and in Figure ' 8.8. The third order tangential and
sagittal field curves may be calculated by differentiating Equatlons '(6) and (7) w1th respect to Y, and X,

|
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E .
respectively and evaluatingat ¥, = X; = 0. The B and F. terms drop out, leavmg only the third
terms. The final equation for the tangential fan is :
L 2
1 . 2 o
t = [ Z(3C + pP® (“““:“" ) ] . (9
S e B P\

For the sagittal fan, the equation is

o 0
The Petzval surface curve is determined by the equation |
‘ | 2
tkp = %(Mks - ter) = Ry : 2y [ZP@z("“Epl_) ] .
Ng.3 Uy ) M, u, ‘
Comparing this with Equation (9) and (10), it is clear thatfor C = 0, typ = tpr = tys -

|

8.7 CALCULATION OF THE THIRD ORDER CONTRIBUTIONS B, I, C, E AND P

8.7.1 Basic formulae. The method for calculating B, surface by'surface, was explained in Paragraph
8.5. 2.2, and a sample calculation was given in Table 8 2. The coef£1c1ents F, C and E are calculated,
surface by surface, by using the data of both the axial and chief parafnal rays. The formulae are:

B = 8i2 | ‘ @
F = Sii ] ’ (11)
cC = Si ) (12)
E = Si1+ ®(uy2-32)». | , (13)

P ig calculated for each surface firom the equation

P = c(n_l - n) . ) . (14)
n_j; n

As in the case of Equatlons (3), (4) and (5), Equations (6), (7), (8), (11), (12), (13) and (14) are derived
from the Seidel expressions for coma, astigmatism, distortion and Petzval curvature.

8.7.2 Calculation of aberrations. These surface contrlbutmns have been worked out, surface by surface,
in the sample problem shown in Table 8.2. The individual surface contnbutlons, when summed up for all
the surfaces, may be inserted in Equations (6) and (7) to evaluate the third order polynomlals.

8.7.3 Fourth order aspheric effects. A fourth order aspheric deformatmn term on a surface introduces
the followmg amounts of third order aberrations,

f
i
i i

8(n; -n) eyt : i (4a)

B = ;

F - BY/y ' | o

c = B(y/y)? | (22)
E - B(¥/y)° . - )

Note that the aspheric deformation term introduces aberrations mdependent of the curvature of the surface.
It introduces no first order chromatic effects or Petzval contrlbutlon. ;
f i

[

# 8 ig calculated from Equation (5) using data from the chief ray.
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8.7.4 The value of using third order aberration coefficients.

8.7.4.1 Inspection of the ray tracing data in Figures 8.5, 8.7 and 8. 8 shows that the third order aberration
polynomial does not predict the true aberration accurately for large apertures or field angles. However,
third order aberration theory is extremely valuable. Even with present day computers, it is almost essential
for a designer to calculate the third order aberrations of a system under consideration. Third order aberra-

, tion theory provides target values for the designer; the third order aberrations must be within fairly narrow

regions in order to obtain a satisfactory design. It is then up to the designer to find a layout which will lie
within this third order region, but which will either balance or reduce the higher order aberrations.

8.7.4.2 Third order surface contributions provide the designer with a means for understanding a lens. He -
knows that the aberrations should be corrected with evenly balanced third order contributions. In other words,
the third order contributions of a single aberration should be approximately equal numerically, but have alter-
nating signs so that the sum is small. A large third order aberration on a surface will introduce a large .
higher order aberration of the same sign. Hence, the third order aberrations should be kept small, Itis
surprising how well one can control higher order aberrations through the use of third order calculatmns by re-
membering the following recommendations.

(1) Try to find the required third order solution with small, evenly distributed aberration
contributions. It is seldom advisable to introduce a large contribution on one surface to -
cancel out several small ones due to other surfaces. ’

(2) Try to avoid large angles of incidence. The angle of incidence strongly affects the
magnitude of higher order aberration contributions.

(3) X a given surface introduces a large amount of any third order aberration, try to correct
this by another surface as nearby as possible. The reason for this is that a surface intro-
ducing large amounts of third order aberrations also introduces a series of higher order -
aberrations. If the third order aberrations are corrected by a neighboring surface, the
higher order aberrations tend to cancel one ancther, but if correction is done at some
other part of the optical system, the higher order aberrations will not necessarily cancel
For example, if a large amount of spherical aberration is introduced at a position in the
system where y/ y = k, then this aberration should be corrected at a surface as .
close as possible to the position where vy v/ y = k. % may often be impossible, in a
given design, to make the ideal correction, but it is an important step in design procedure
to make the attempt. One of the main reasons that aspheric surfaces are so valuable, is
that they do allow the introduction of aberration at nearly any place in the optical system, -
without upsetting the distribution of focal lengths of the different elements needed to cor-
rect for color and Petzval field curvature.

8.8 AFOCAL OPTICAL SYSTEMS

8.8.1 Third order polynomial. In telescopic systems, where both the object and image are at infinity, it is
convenient to plot the tangents of the angles which the emerging rays make with the optical axis, versus the

coordinates (X, , Y; ) of the entering rays. The meridional ray. ( X 1 = 0 and Y, arbitrary)
L L i -
data are plottedas —k-1_ k-l versus Y . The skew ray (Y, = 0 and X arbitrary ) data
Mk—l Mk— 1 1 :
are plotted as two curves:
Ky
M., versus X, ,
and
Ly T
(kl-jl) versus Xl.
M1 My,

The third order polynomial may then be written as in Equations (6) and (7) by making the following substitutions:

K
Y, = - %1 tanvy X = - -1 k-1
and : Uk ~ k-1 My-1
Yo = - Ykt tan T, .
gy
8-15
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Equations (6) and (7) then become .

L _ j Y (3Y.2+ x.2) /Y

(_zc_l__ __,&) S S [;B(le+ X,2) y_1§,+ pp L - *1 (;—‘L)
. 1 :

My Mg 2(ngy yi1) i V1
Yl ‘ Yo 2 :
+ Z(3C + P&®2) — (_—-) ]+'0(5), (15)
¥y Yo . ' .
and ’
K1 1 [ X (2Y X)) (Y
Xt . - |ZB(Y.2+ X2 (—L)+ZF———-——-————':—°—
My 2(ngy Yeq ) | (¥2%+ X,%) v,® i v,2 A
t
xl Yo 2
+ Z(C + P®?2) (——) (:——) ]+’0(5)- ' (16)
¥i Yo

8.8.2 Spot diagram. ,
\

8.8.2.1 In an ideal, aberration-free afocal system, the emergent rays from the k - 1 surface are parallel
In a real afocal system these rays are almost paraliel. The mtersectlon of these rays with a plane would give
a series of points more or less evenly spaced; the points would not be concentrated, as in a spot diagram ( see
Figure 8.1 (b) }, and it would be difficult to interpret the diagram in the same way as in the case of the spot
diagram. . .

|

8.8.2.2 It is posmble to concentrate these almost parallel emergent. rays and make a spot diagram for an
afocal system by adding a hypothetical aberration-free thin lens at ‘the rear of the system with any desired
focal length. This is effectxvely done simply by changing the coordmates for each ray on the last surface of
the system to zero. The rays then proceed to the final focal plane ‘of the aberration-free lens from this point’
at the same angles because they pass through the center ( comc1d1ng nodal points ) of the thin.lens. The dis-
tance to the image plane is the arbitrary focal length of this lens. ‘The spread of the pomts from a single, con-
centrated spot, is an indication of the non-parallelism of the emergent rays. This inturn is an indication of
the aberrations of the afocal system. o ' . Lo

8.9 STOP SHIFT EQUATIONS ;

8.9.1 General. The aim of a lens demgner is to minimize the abelrratlons of the optical system within the
specifications of f - number and field of view. It is clear by Equatmns (4), (5}, (11), (12), (13) and (14)
that the third order coefficients depend on index, curvature, and thickness. By Equations 6-(34) and 6-(35),
the first order chromatic coefficients also depend on these parameters. But the occurrence of i, §, and
u_y in Equations (11), (12), (13) and 6-(35), show that the oblique aberrations { coma, astigmatism, dis-
tortlon, and lateral color ) depend on the posmon of the aperture stop as well, Hence 1t is necessary for the
designer to know the effect of the stop position on these aberratmns‘;. . A

t

8.9.2.1 The aberration polynomials shown in Equations (6) and (7} are calculated from the coefficients B
F, C and E which are determined by tracing an axial and an obhque chief paraxial ray. It is possible to
compute the aberration polynomial for any other paraxial chief ray. The term other paraxial chief ray, or
ghifted chief ray, refers to another ray which crosses the optical axis at the new pupil points. Hence shifting
the aperture stop results in a new ray becoming the ( shifted ) chief ray. Suppose we wish to write down the
aberration polynomial for a paraxial chief ray which passes through the original entrance pupil at a height of
¥y *. A ray from object point Y, passing through the original entrance pupil at a height of ¥; will be at
a helght of Y{ _in the original entrance pupil above the new chief ray. Figure 8.11 shows that

Yl = Yl + Yl !

8.9.2 Aberration polynomial for a shiited chief ray.

8.9.2.2 Equatmn (6) ‘may be written now in t terms of Y/ . The distortion term in Equation (8) is added to
Equation (6) to give the aberration Y, - Y m. For an ob]ect :of height Y , it can be seen by gimi-
lar triangles that Y* is given by '

= — Y
Yi* o= y1¥ ( :__0_) .
Yo
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Figure 8.11 - Application of stop shift equations.

Then the height Y{ of the ray above the new chief ray is
— _ Y,
L A R Co
Yo
By substituting this expression into the sum of Equafions (6) and (8), -and by using the relation,
Q = y*/vy,

it is possible to arrive at the equation

_ 1 %) | (3Y1'2+ x,? (%)
: - — = 1 2 2y { —— _— =2
; (Yk — YO m) = 2.(nk-1_ Uy g ) !:EB(Yl + Xl)(yls + (QZB-FZF) . Nylz ) yQ +
[302ZB + 6Q ZF + Z(3C + P&?)] A v, ot
3" 2 ' 2y . Yo\ 3 '
[@®ZB + 3Q%3F + @=(3C + P22) + ZE] _—-) . an .
‘ : : Yo /° ,

8.9.3 Third order aberration coefficients. Equation (17) is the aberration polynomial with a shifted chief
ray and therefore a shifted entrance pupil. If this equation is compared with the sum.of Equations {6) and
(8) it has a similar form. In Equation (17) the original aberration coefficients B, ZF, ZC, ZE
and ZP have been replaced by linear combinations of these coefficients. Since the aberration polynomial
has the same form it can be said that the third order coefficients have changed to new values. The new
third order coefficients will be indicated with a superseript *. By comparing Equation (17) with Equations. -
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l

I

(6) and (8) it follows that
I

ZB% = ZB, ‘ (18)

ZF* = QZB + IF, - E (19)

SCc* = Q2ZB + 2QZF + ZC, f (20)

SE* = Q3ZB+3Q22F+QZ(3C+P<I>2)1+EE, (21)
and | i

Zpx = ZP, | (Zla)

|

8.9.4 PFirst order aberration coefficients. Using Equation 6-(39), to complete the hst of changes of the '
aberration coefficients as the chief ray is changed, the chromatic coefficients then become

a%* = a, l . (22)

and i

b* Qa + b. ' ‘ : (23)

8.9.5 Use of the stop shift equations.

8.9.5.1 These equations, (18-23), are often called the stop shift equations. They are extremely useful
and will be referred to many times in later sections. They enable the designer to predict how the third
order coefficients change with the choice of the chief ray. Again we see that any two paraxial rays traced
through the lens are sufficient for all third order calculations on the system. If the oblique chief ray traced
through the system turns out not to pass through the center of the new aperture stop, it is possible to use
the stop shift formulae to compute the third order coefﬁclents for the chief ray that does pass through.
8.9.5.2 The designer should note that Equation (17) uses the aper.Lure variable Y{ . As shown in Fig-
ure 8.11, ¥’ is the height of a general ray above the new chief ray in the original entrance pupil. The
height of this general ray above the chief ray in the new entrance pupil will not be Yi if the object is at

a finite distance. In order to write the polynomial in terms of Y1 one must account for the magnification
between the original and the new entrance pupil. Now it should be noted that the polynomial involves the -
ratio of Y' / ¥y . It turns out that the corresponding ratio for the new entrance pupil has the same value.
Therefore the aberratlon polynomial, Equation (17),can be used thh Yy and y; as coordinates in the
new entrance pupil. '

8.10 THIN LENS ABERRATION THEORY

8.10.1 Third order coefficients. It is possible to combine the two surface contributibns of a thin lens in
air and obtain simple expressions for the third order aberrations.. By assuming that the lens is thin, the
values of y for the axial paraxial ray are the same on the two surfaces. X it is further assumed that the
lens is the aperture stop ( and hence the entrance and exit pupils ), the oblique paraxial chief ray passes

through the center of the thinlensat y = 0. The third order aberrahon coefflclents of the thin lens
are then i
B = a, + a; ¢, + a3 c,2 , : (24)
F = By + By ¢1 , ' | ' - (29)
c = -¢22, L ‘ k | (26)
E = 0, ‘ ‘ ! ' 27)
and | i | |
P = - % . ' (28)
8-18
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The constants of the new equations are:
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n-1

%‘{f [(Sn +.2) (“y—:i)z + ("b_n.)z.n ;

$n

n-1

MiL-H

(3n+1) 2L ] (29)
y

2 Lo (89) (25) e ]

@ = Ju, -yu, =

;u'yav

8. 10.' 2 Limitations; comparison with thick lens results.

y = 0 atthe lens.

B* =

F *

C*

E* =

and

If the value of y

)
pdy2 u_ ¢
2 L () - ).
¢‘§Y2 (n+ 1):
n
(u_y - u) 1 :
1y = ¥ (from Equation 6-(24) ) ,

is the index of the lens,and ¢4

is not zero it is necessary to calculate B ¥, F *,

a* + oa* ¢y + ag cy?

B + BF ¢y + B c;2 ,

"ot oo e,

2
610= + 52* € + 63* ¢y .

Qq

Qa,

Qa3 ’

Q? as
Q3 o

Q3 oy

.Q3 a3

The coefficients of these guadratic equations are as follows:

ay* = a,
+ ,31

+ BZ o
+2Q B
+ 2Q Bz
+3Q2p
+3Q% 8,

> agd = ay

- 82,

>

- Q(3n + 1)
8-19

>

,¢q>2

>

(30)
(31)
(32)
(33)

(39)

(35)

C *,

(36)
(37)
(38)
(39)

(40)
(41)
(42)
(43)
(44)
(45)
(46)
(a7)

(48)

(49)

DBK-14]

where u.; is the angle of the axial paraxial ray in air on the left hand side of the thin lens and u is

the angle of this ray in air on the right hand side, n is the curvature of

8.10.2.1 Equations (24) through (28) are valid for any thin lens in air at any position in a system provided

E *, ‘and

P * from the stop shift equations (18) through(21a). With the proper substitution it can be shown that,
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8.10,2.2 To illustrate the use of these equations a sample calculation for all the thin lens coefficients is pre-
sented in Table 8.4. In this example, the calculations were made pn the thin lens 111ustrated in Table 6. 13 .
Table 8.2 shows the same lens system with thickness added. The thin lens equations were used with

0.253 forlens(a),

C1

cy -0.200 for lens (b),

and
cy = 0.050 for lens (c).

8.10,2.3 Table 8.3 lists a comparison between the thxrd order abe[rratlon coeff1c1ents calculated from the -
thin lens equations and those calculated from the surface contnbutmns of the thick lens. The differences '
‘between the coefficients is due to the thicknesses introduced in the sample shown in Table 8.2, Slight
differences are also due to the differences in Cqe

8.10.2.4 In the following sections it will be demonstrated how the thin lens equations are used in the pre-’
liminary design of a lens system. ‘ )
| |

Lens and Coefficient Thin Lens Formula Thick Lens Formula
B -0.0365 -0.0355
Lens (a) F 0.0241 0. 0221
C1 =0.253 C -0.0647 -0, 0604
E 0.1046 0.0962
P -0.1021 0. 1094
B 0.0722 0.0731
Lens (b) F -0. 0340 -0.0352
C, =-0.200 C 0. 0895 : 0.0919
1 E -0.0182 ; -0.0195
0. 1770 - 0.1759
P
B -0.0443 -0.0440
Lens {c) F 0.0136 : 0.1029
C, =0.050 C -0.0290 : -0,0272
1 E -0.0776 -0.0746
P -0.1124 i -0.1135

Table 8.3 - Comparison between third order aberratmns calculated from
thin lens equations and from md1v1dual surface contr1but1ons
of a thick lens.

i
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I Quantity Lens (a) | Lens (b) | Lens (c)
y2 2.25000 | 1.28989 | 1.56630
4
I y 5, 06250 1.66380 2.45329
b5/, -0.51678 | 0.29456 | -0-27574
I od ~0.09029 | 0.15669 | ~0-09942
2 - . ~0.09612
bay2/, 0.12541 0.12468
I 052 ~0. 04930 0.08555 | =0.05428
n+l 2. 6200 2.6210 2. 6200
n+2 3.6200 3.6210 3.6200
I 2n+1 4.2400 4. 2420 4. 2400
3n+1 5. 8600 5. 8630 5. 8600
3n+2 6. 8600 6. 8630 6. 8600
4n+4 10. 4800 10. 4840 10. 4800 -
l u_/y 0 -0.21841 | 0.06223
¢n/n-1 0.43210 | -0.74911 0, 47576
2 .
l (3n+2) “-1) 0 0.32739 0.02656
2\Y
(_921_1 ) n 0.30246 | 0.90964 | 0.36668
n-1 ‘
¢n . L Uy ,
I s | (3n+1) v 0 -0.95926 | =0, 17348
oy -0.15631 0.08182 | -0.06060
I (4n+4) ‘_’y-_l 0 -2. 28981 0.65213
¢n ‘
" (2n+1) -1, 83209 3.17771 -2.01721
l a, 0.94679 | 0.26153 0.37641
ag | -1.87075 1.06659 -0.99817
| ' (2n+Du_y/y 0 -0.92650 | 0.26384 -
n
-(i_—l) n 0. 70000 1.21430 | -0.77073
l B1 0.08778 0.03588 0.04872
B2 -0.32856 0.32680 -0, 25183
l Q ~0.53333 | _p.06268 0. 50844
B* 0.17115 0.03076 0.01791
Bs* -0.83352 0.31040 | -D.06045
l Bg 0.99773 | -0.06686 | ~0,50752
"* -0. 18740 0,08138 | -0,02040
. .
"'2* 0.61978 | ~0.03994 | -0.15878
I Y3 -9.53212 0.00419 | -0.25804
5 £ 3
1 0.19373 | -0.01899 | -o.07001
o4 -0.42400 -0.00379 | ~0.14584
l o4 0.28380 | -0,00026 | -0.13120
Table 8.4 ~ Calculation of the thin leﬁs coefficients
I for the thin lens shown in Table6,13.
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9 METHOD OF LENS DESIGN

9,1 - THE PROCESS OF DESIGNING A LENS SYSTEM

9.1.1 Introduction. The formulae used to design a lens system have now been presented. Ray trace
equations were derived in Section 5. Their use in first order design and in aberration analysis were dis-
cussed in Sections 6 and 8. In the present section a systematic method for the design of lens systems will
be described, and this method will be illustrated with the design of a triplet flat field lens in Section 10.

9.1.2 Approach. The design of a lens system at the present state of the art is an iterative procedure.
Certain steps in the procedure are repeated until a satisfactory design is attained. In this sense, lens.
design involves a trial and error procedure. At present (1962), direct methods of design, proceeding from
the desired specifications to the specific lens, do not exist. The following steps are the basic elements of
the iterative procedure. .

(1) Select a lens type.
-(2) Find a first order thin lens solution.
(3) TFind a third order thin lens solution.

(4) Find a thick lens solution, and calculate first order and third
order aberrations.

(5) Trace a few selected meridional and skew fans.

(6) Adjust third order coefficients to balance higher order. aberrations,
and repeat steps 5 and 6 until the balance between third and higher
order-aberrations agrees with desired specifications, or at least
is reasonable.

(7) Trace additional fans of skew rays; make spot diagrams and
calculate the energy distribution.

(8)  Evaluate the image.

9) Return to a previous step and repeat the process until evaluation
indicates desired performance. Which step to return to depends
on the problem. The most usual procedure is to return to step
(4), but often the designer must return to step (1).

9.2 DESCRIPTION AND ANALYSIS OF THE BASIC PROCEDURE

9.2.1 Step 1 - Selection of a lens type.

9.2,1.1 In order to select the type of lens to be designed, the designer must first survey the complete
lens problem. He attempts to equate it to one of the simple basic optical systems. He asks if this is a
magnifier problem, a microscope, a telescope or a camera lens. After deciding upon the basic system, he
then proceeds to make a layout using simple theory as illustrated in Section 7. This analysis thus gene-
rates a possible arrangement picture of how the axial and oblique rays will pass through the system, -

9.2.1.2 Suppose, for example, that the system to be designed is a telescope. Given the magnifying
power, field of view and over-all instrument length, a designer may conclude that the telescope should
consist of an objective, a prism erecting system and an eyepiece. From the preliminary analdysis he con-
cludes that the objective must work at f/ 3.5 and the eyepiece must cover a half field of 30" . Looking
over objective designs (for example, seé Section 11} he may then compute the field curvature for the system
and conclude that he will use an objective like the one illustrated in Figure 11.7, and, since the eyepiece
must cover a half field of 30° , an Erfle type appears to be a logical choice. Inspection of the eyepieces
shown in Section 14 discloses that the Erfle is the simplest design. It represents a good starting point.

9.2.1.3 Other factors may influence the designer's choice. Compatability with other systems, existing
hardware, economics or delivery schedule are all valid considerations. Thus, unfortunately for the -
beginner, this step in the procedure is difficult and requires the most experience. As the process pro-
ceeds, the steps become more automatic and less dependent on experience. This means that the beginner
finds it difficult to get started and it means that the designer instructing must say in effect at the beginning,
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"Let us start with a lens of such and such a type. Later I may be abie to show you why I picked this parti-
cular type of solution.' This approach to a problem does not appeal to the analytic mind but at present there
is no other way to approach the problem. It would be nice if one could work from the specifications of the
image, back to the design required, but there are only very limited procedures which will enable one to esta-
blish what lens type is needed for a particular problem. In Sectlons 10, 11, 12, 13, and 14 the perform-
ance and limitations of several types of lenses will be described whlch it is hoped w111 help a beginner select
the type of lens. i
9.2.1.4 The prime accomplishment of this step is the designer's dec1smn to choose a t:ertain lens type to
perform a specified function in the system. Thus a starting point is estabhshed from which computation and
evaluation can proceed. This step, baffling as it is to the beginner, is really the most creatwe part of the
design, and, as experience is gained, this is the part of the design that intrigues the des1gner and gives hlm
a chance to exercise judgement, which is what humans usually enjoy.

9.2.2 Step 2 - The first order thin lens solution. Once the lens type has been decided on, the next step
is to solve the algebraic equations to determine the individual focal lengths and spacings of the elements. It

greatly simplifies the procedure to assume that the lenses are thin. (At this stage of the problem, there are. °

usually conditions that must be satisfied in the passage of the axial parax1a1 ray, and the oblique paraxial
ray. The entrance and exit pupils may have to be located at special posxtlons and their sizes may be given.
The focal length and back focal length may be specified. It is also necessary to adjust the axial and lateral
color, and Petzval sum to appropriate values. The passage of the oblique chief ray has an effect on the
distortion. For simple systems it often is possible to write down algebralc equations relatmg the parameters
of the system (¢, t, n) and the required conditions to be satisfied, but very often the algebra becomes so
complex that graphwal or linear approximations are required to fmd the solutions. The problem basically
amounts to trying to solve a set of non-linear equations. Sometlmes there are more equatlons than varlables,
in other instances the reverse may be true. One can spend a great deal of time on the algebra at this stage
of the design. Often, the most sensible procedure is to resort to a systema'uc trial and error solution. This
method will be illustrated in Section 10. 2

9,2.3 Step 3 - The third order thin lens solution. By making the thin lens aberration coefficient calcu-
lations illustrated in Table 8. 4, it is possible to obtam sets of second degree algebraic equatlons relating
the first curvatures of the lenses and the aberrations. Again, in snnple systems these can sometimes be
solved algebraically or graphically. As a matter of fact, if these equatlons cannot be solved algebraically .
there is little justification for using the thin lens approx1mat10ns, for one can as readily apply the trial and"
error methods to thick lenses using the surface contrlbutlon calculatlons shown in Table 8 2. By properly
choosing the position of the aperture stop it is possible to greatly snnphfy the equatlons. The following
reasoning is used in the preliminary design. In the prehminary third order design the aberratmns are
usually all made equal to zero. Equations 8-(18) through 8-(21) show us, that if B, ¥, C, E and Pare
all set to zero, then B*, F*, C*, and E* will all be zero. This tells us that the loca.tlon of the stop
position has no effect on the aberrations. Then it is advisable to chopse the chief ray to pass through the
center of one of the lenses. By so doing, the aberrations-for this lens are given by Equations 8-(24)
through 8-(28). This eliminates the calculation of E, the C is constant and F varies linearly with
c;. In practice, it helps to use this procedure even if small reSIdual aberratxons are to be left in the sys-
tem,

|

!
;
I

9.2.4 Step4 - First and third order aberrations of a thick lens.

9.2.4.1 During this step in the design, calculations of the type shown in Table 8. 2 are :made to determine
the first and third order aberrations of the lens with actual thicknesses. If the thin lens theory has been
worked out completely, then values for the curvatures and the des1red angles of the axial and oblique rays

are known. Now, the procedure of introducing thicknesses changes a,ll the first order and third order aberra-

tions. The next problem is to modify the thick lens soluhon to achlex{e the desired aberratlons.

9.2.4.2 Some designers have procedures for computing the posmons of the principal planes of each indi- -
vidual element. Then the thick lens system is set up so that the ﬁrst curvatures of each of the lenses are
the same as for each of the thin lenses, and the angles the axial ray makes with the axis is the same as for
the thin lenses. Finally, the spaces between the lenses are adjusted. to make the spacmgs between the image
principal plane (P a) and the next object principal plane (Plb ) of the thick lenses equal to the spacing
between the thin lenses.

9.2.4.3 The designer should not spend too much time trying to adjust the spacings in thlS way since there
is no direct and easy way to set up a thick lens equwalent of the thin lens. The procedure just described
always fails to keep all the aberrations the same as for the thin lens,l some changes in the power distribution
are necessary. .

|

i
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9.2.4.4 1 the designer is setting up for the first time a thick lens from thin lens data, there is really very
little point in trying to make the thick lens aberrations exactly equal to the thin lens aberrations. The.reason
for this is that until one has ray traced a design, and determined the magnitude of the higher order aberrations,
it is not possible to tell just what third order aberrations are needed to balance out those of a higher order.
Usually, a perfectly satisfactory way to set up a thick lens from thin lens data is to assume the positions of

the principal planes, from a simple sketch of the lens, using curvatures from the thin lens solution and thick-
nesses from 10. 4.

9.2.4.5 A major problem in lens design is the problem of adjusting a thick lens to arrive at some definite
third order aberrations. This can be done by a trial and error method if some information is known about
how the aberrations vary with parameter changes. Sometimes the information in the form of curves for the
thin lenses provides indications to the designer which help him decide how to adjust the thick lens to finda -
solution. -

9.2.4.6 The problem of adjusting a thick lens system resolves itself into the problem of solving a set of <+
simultaneous equations. One can systematically change one parameter at a time and recalculate all the. -
total aberrations of the new system. By finding the differences in the total aberrations due to the parameter.
change, it is possible to compute the parameter differential for all the third and first order aberrations.
This method will now be discussed in detail. .

9,2.4.7 Since B, F, C, E, P, a, and b are functions of all the system parameters, it is possible to
write

AZB - J:gl-l (aach)j Acj + (a_gt]i)j Aty + (ang)j Anj: , ¢
AZC =jj§: K%E_CC Acj + ﬁazt_C_j Aty + (?—nc)] an; 7, @
j , - .
AZP = j:z;l[(ia%’_j Acj + | (_?TP)j Aty + (G;P)j-mjj - (%)
AZa =jj=§11[—(:%%_ Acj + (%i)j Aty + (?—na), An; +(.a-§3-)] Auj] , (8

j=k-1

_ 85D\ A a5\ A, . [93b) an. . [3ZBY) A .
AZb & ac\jACJ +(at )j ts +(an j n; +(3v j vil - (M.

9.2.4.8 In order to correct a finite thickness lens system to any desired third and first order aberra-
tions, a designer must, in effect, solve this set of simultaneous equations. Now since B, F, C, E, P,
a, and b do not change linearly with parameter changes, these equations will not, in general, pro-
vide the correct changes, so the process must be repeated for a series of iterations. Without a large
computer it was a hopelessly long procedure to systematically correct a system to a given set of third
order values. Therefore, designers had to resort to other techniques. "They did this by separating the
problem into two parts. First, a solution was found which corrected a, b, and P, with some consid-
eration given to E. Second, this solution was corrected for B, F, and C. '

9.2.4.9 The first step, correctionof a, b, P, and E, was done by adjusting the focal lengths of
the lenses and the spacings between the lenses. Sometimes different coefficients were found for the
changes of a, b, and P, and simultaneous equations solved, but the index and dispersion of glass
were usually not included because glasses are manufactured in finite steps. Usually designers resorted
to a simple trial and error method of adjusting focal lengths, spaces, and glasses. Itis surprising how
rapidly an experienced designer can adjust variables and arrive at a solution without actually solving
the above equations. . ‘

9,2.4.10 The second step, correction of B, F, and C, was done by the technique called bending.
Lens bending means changing the shape of a lens without affecting its focal length. Equation 6-(22)
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gives the expressmn for the power ¢ of alens as (c; - c,) (n-l) As longas ¢, remains
constant, may take on any value without affecting ¢. 1If the lens is thin, then bendmg dzoes not change
the angles of ]the axial and oblique paraxial rays after passage through the lens. If the lens is thick, keeping
(c1 - ¢,) constant is not quite the same thing as keeping the focal length fixed because §°’ depends on t
as well as (c1 - c ) Usually in bending thick lenses, it is advisable to solve for the second curvature so
that the axial ray remams at a constant angle with the optlcal axis. Bending of a lens has no effect on a,

b and P for a thin lens and a very small effect in a thick lens. The behding affects prlmanly B, F, and
C. ‘ j

9.2.4.11 Therefore, before the widespread use of computers, desighefs found solutions for given values of B,

F, and C by setting up three simultaneous equations. Usually many of the possible degrees of freedom were
not used. Experienced lens designers seldom actually solved the equatlons, but they would keep adjusting the -
lens by a trial and error method. In the lens designers' slang, the method for finding a solution is jiggle in
or poke atit. Itis amazing how successfully an experienced designer could jiggleina des1gn. This method
appears to be an art. With experience a designer apparently develops a prmeﬁme analogous to solving these
equations in his head, by developing a feel for the system. - (

9.2,4,12 With the modern computer it is now feasible to find automatlcally a solution of Equations (1)
through (7). In Section 10 several examples will be shown 111ustrat1ng how this is done. Up to the present;
the equations solved automatically by the computer have not included the terms with the iglass type as a
variable. ‘Many problems have been solved using curvatures and thicknesses as variables. The automatic
program does essentially the following: ‘ .

(1)  All the first and third order calculations are computed for an initial
system. Call this system No. 1. |

(2) Each system parameter (c or t) is varied one at a time, and all
the first and third order aberrations are calculated for each altered
system. The designer may specify whlch curvatures and thicknesses
to change. Each parameter is changed by 0.01% of its in1t1a1 value.

(3) leferentxal coefficients are then computed for each variable and
aberration. For example,

(cnew " Cola )j = ich ’
and ‘
(ZBnew - ZBold)j = AZ Bj
|
Then }
(aZB ~  _bzB;
A ¢

(4)  When all the differential coefficients are known, the data for the
seven equations (1) through (7) are known. The numbers on the
left hand side of the equation are found by taking the dlfference
between the aberrations in system No. 1 and the final tarrget
(desired) values for the aberrations. For example,

AZB = (B - zBl) ete.

target ‘

(5) If there are seven variables in the optica}l system then there will be
seven equations with seven unknowns. If there are more variables
than equations then the set of equations cannot be uniquely solved
One technique is to impose the condition, that the sum of the squares
of the changes in the parameters shall be a minimum. * If there are
fewer variables than equations then it is (not possible to obtam an
exact solution. In this case it is Customery to solve for a least
squares solution. This means a solution is found when the sum of
the squares of the differences between the final aberrations ?nd
their target values is a minimum.

t
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(6) If the aberrations changed linearly with parameter changes, the
target values for the aberrations would be found in one step. How-
ever the changes are not usually linear, so the process has to be
repeated several times. If the target values for the aberrations
are fdar removed from the initial values, there is the real possi-
bility that this inherently simple procedure will not converge to a
solution. Knowledge of the regions of solution is an invaluable
aid in helping to select the initial values for system No. 1.

9.2.5 Step 5 - Tracing a few selected meridional and skew fans.

9.2.5.1 After the third order solution is found, the next step is to trace a few selected rays to evaluate the
effects of higher order aberrations. The number of rays to trace depends on tne stage of the design. : Onthe -
first ray trace of a new system, only a small number of rays need bé traced, but as the des1gn proceeds
additional rays may be necessary for added refinement, .

9.2.5.2 One suggested plan for the ray tracing of a design is as follows:
(1) The 0° image. In D light trace threeraysat Y, = (Yy)., -

Y =07 () , Y =05(Y) ,
where (Y ) max. 1S the radius of the entrance pup11 Trace the
same rays in’ ¥ ‘and C light.

(2) If the object is at infinity, trace three meridional fans of rays at
angles corresponding to L, = (L) L, =07 (Ly)
and Ly = 0.5 (L) max. - If the o%{ect is at a finite dlstance
trace the rays from three object points Yo = (Yo )max , .
Y5 = 0.7 (Yo) max,. 2and Yo = 0.5 Yo Jmax, - For each
obliquity, trace at least five meridional rays to enter the entrance
pupil at uniform intervals ranging from Y, = (Y ) to )
Y, =-(Y) oy -

(3) For each obliquity, "trace three skew rays with coordinates in the
entrance pupil as follows:

(X1) max. , Yy =0 K1) max. = (V1) max.
0.7 (X 1)max Yl =0 since the entrance
: "~ pupil is assumed
0.5 (X3) max.. ¥ =0 to be a circle.

(4) Repeat steps 2 and 3 for F and C light.

9.2.5.3 The data from the ray tracing may be plotted as illustrated in Figure 8.5, and Figures 8.7 )
through 8.10. In practice, this data is plotted on a single diagram usually leaving out the plots shown in
Figures 8.8b and 8.9 . A plot of this type is shown in Figure 9.1. In making these plots, it is advisable
to use the same scale for all the plots of Yk and X, At first it might appear that lenses of different
focal lengths should be plotted using different scales. Actually, for most applications, the scale shown in
Figure 9.1 represents the size of images used most frequently. Therefore, it simplifies plotting and helps
one to assess rapidly a lens if these plots are made on this standard scale. Notice that 0.01 division on
the vertical scale corresponds to 1 cm. (But this has been reduced to 0.86 cm in reproduction. } If the
lens is calculated in centimeters, then 1 ¢m on the vertical scale of the graph corresponds to 100 microns.
If the lens is calcalated in inches, the 0. 01 division should be replaced by 0.004, so that again 1 em indi- .
cates a 100 micron image. H it turns out that the aberrations are so large they cannot be plotted on this
scale, they are so large that they probably are not worth plotting.

9.2.6 Step 6 - Adjusting third order aberrations., Usually one attempts to make the curves in Figure 9.1 as
flat as possible. In a perfect lens the curves would be horizontal straight lines. In most cases this can

not be achieved, even to practical limits. The usual curves look more like the ones shown in Figure 9-1.
Take for example the curves shown for the image point at 1.76. The meridional rays are focused with-

in a strip 0.012 wide. The skew rays are confined within a strip 0.016 wide. One can say with fair -
assurance that the complete image is confined to an area 0.012 by 0.016. Since the meridional ray plot
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Figure 9.1- Sample plot of selected ray trace data.
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shows a region where the curve is flat and horizontal, one would expect to get some concentration of energy
towards the center of the spot. When one begins adjusting a design it is usually possible to tell from these
curves what is needed to improve the energy concentration. For example, the basic difficulty with the
design represented by Figure 9.1 is that the Petzval sum is too negative. This is the reason the skew curves
are so far from the horizontal. "One can also seé that the image at a height of 3. 64 will be poor because of
the over-corrected spherical aberration in the upper meridional rays. These defects might suggest to the
designer that he should try to find a solution with less negative Petzval curvature and introduce more nega-
tive third order spherical aberration. I so he would then return to Step 4 in paragraph 9. 2.4 and solve for
new third order aberrations, and repeat Step 5. Several alternate solutions may therefore evolve, but
eventually it will be necessary to evaluate the energy concentration by proceeding to Step 7. - T

9.2.7 Step 7 - Calculation of spot diagrams and energy distributions. The energy distribution .curveé'
should be computed as described on page §,1. Usually it is advisable to compute the energy distribution
curves for a field point on the axis, for one half-way out in the field and for one at the edge of the field. .

Strictly speaking, one should also compute curves for two or three wavelengths, but this takes a great.
deal of computing and usually is not necessary for the average problem,

9.2,8 Step 8 - Image evaluation.

9.2.8.1 Once the designer has computed the energy distributions in several images in the field he'is able
to compare these with the design requirements. Seldom can one achieve the required results in the first
system analyzed. The designer must then decide whether to continue with this design or to shift over to
another type of lens. If he shifts over to another lens type he may then return to Step 1. If he decides to
stick with the present lens type, he must decide whether to continue trying to meet the original specifica-
tions or whether to seek to modify the specifications and provide an alternative compromise solution. Usually
the modern design problems end up with a give and take solution. The designer must therefore eompletely
understand how the lens will perform, and be able to show what can be achieved by making variations in the
original specifications. This means he may have to carry several designs up to the energy distribution
curves in Step 7 in order to make a wise decision. It is imperative therefore that he devise ways to quickly
evaluate the design. :

9.2.8.2 The energy distribution curves of Step 7 may be used to check the image quality. This is a satis-
factory method for many optical systems, but if the image quality is high one must consider the calculation of
diffraction effects. As a general rule, one does not need to worry about diffraction effects if the wav efront
departs from a perfect sphere by more than two to five wavelengths. (A method of computing this departure
from ray trace data is described by H. H. Hopkins. *) There are several criteria one can apply to gauge

the influence of diffraction, but this is a subject in itseli. (See Sections 16, 25, 26.) However, a designer
should be familiar with the wavefront tolerances suggested by Conrady. **

9.2.8.3 One must remember that it is impossible to concentrate the energy in an image into a smaller
spot size than predicted by diffraction. In Figure 9. 2 a plot of energy distribution is shown for a perfect .
lens. The abscissa Z is the following:

T Yed
Ag

where

is the radius of the exit pupil
is the diameter of the image spot
is the wave length of light

is the distance from the exit pupil to the image plane which is located
at the perfect focus , ' :

> 8

h'

The first dark ring occurs at a value of Z equal to 3.83. This has a spot diameter

A gt Agy
d =(3-83 ) ( ) = 1,22 ———
T Y, Y,

» H. H. Hopkins, Wave Theory of Aberrations (Oxford University Press,
London, 1950) pp. 21-23.
**A. E. Conrady, Applied Optics and Optical Design, Part 1 (Oxford
University Press, New York, 1943) pp. 126-141, See also Part],
2nd ed. (Dover, New York, 1957) pp. 126-141, and Part Il (Dover,

1960) pp. 626-639.
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It is always a good idea to plot this curve on the same graph with the energy distribution curves computed
for the actual lens. If the geometrical energy distribution curves lie to the left of the diffraction curve one
knows that the light will not concentrate as well as the geometrical distribution curves indicate, The actual’
distribution curve will be inclined to follow the diffraction curve. Quite often the geometrical energy dis-
tribution curve will cross the diffraction image curve as shown in Figure 9.3 One can then estimate the
energy concentration by using the formula ‘ -

Z = Vg2 2 .
\

= 2
G+ D G+ 2D

Where ZG‘“ geometrical spot diameter

) !
ZD~ diffraction spot diameter of a perfect aperture
. ‘ : ,

Zg+Dp ~ estimated spot diameter.
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Figure 9.2 - Energy distribution for a plerfect lens.
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9.2.8.4 Some designers object to the energy distribution method for image evaluation because it does not
take into account the orientation of the energy distribution. For example, if there is astigmatism the energy
will be concentrated in a line image. The fact that the image of a point ig a line might actually be favorable
in some types of optical systems. For example, if the image is scanned by a slit one could certainly use
this to advantage. For most optical systems however the circular energy distribution curves'are adequate.
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Figure 9.3 - Energy distribution curves.

9.2.8.5 The most modern method for evaluating images is to compute the optical transfer functmn (often ‘
called the sine wave frequency response) for the image., This can be done by performing a Fourier :
transform of the energy distribution in the image of a point source or a line source. Figure 9.4 shows a
series of energy distribution curves. Figure 9.5 shows the corresponding modulation transfer curves.
The modulation transfer function is the modulus of the complex optical transfer function. In Figure 9.4
all-the curves are normalized to a maximum spot diameter of 10 mm. In Figure 9.5 the frequency is
given in lines/mm.. These spot diameters may of course be scaled to any other size. For example,
suppose the maximum gpot diameter is 1004. Then the frequency scale should be multiplied by 100.

One can multiply the modulation transfer function of a lens by the function for a detector to obtain the
overall function for the entire optical system. Finally one can estimate the cutoff frequency at some
particular response. A review of this approved image evaluation method may be found in Sections 26. 2,
26.3 and 26, 4, and in the article by Perrin ("Methods of Appraising Photographic Systems " J. Soc.
Motion Pictnre and Television Eng., 69, 69 151-156, 239-249 (1960).

9.2.8.6 The problem of tmage evaluation is so involved that actually a destgner is always forced to refer
to some system which is known. Before attempting to improve a new system, a designer should try to do
the following:

(1) Find out what systems have already been designed for conditions as nearly
identical as possible with those specifying the new system.

(2) Evaluate the energy distribution of the nearest equivalent system.

(3) Compare the energy distribution in the new design with that of the closest
equivalent to determine if improvement has been made.

o
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Figure 9.4 - A series of energy distribution curves.
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9.3.1 Paraxial ray trace equations.

= t
vy o=y + S/ ) e
nu=n_j uy +y (ny; -n) ¢

Alternate equationé,

5, (G- 1) @0

5
B = si?
F =81
Cc =si?
E =58iT+ ¢ (@ - ud)
ce(n ., - n)
P = =
n, =n
For an aspheric surface with a fourth order coefficient of e,
B=8 (n, -n) eyt
F = By/y
C=B (5’/)’)2
— 3
E =B §/v)
9.3.4 Stop shift equations.
zB* = TB
TF* = QZB + ZF

5Cc* = Q2 =B + 2QZF + =C

SE* = Q° B + 3Q2ZF + QX(3C + P&%) + TE

Zp¥= ZP
a* = a
b* =Qa + Db

9-11

Yy =¥1 + tg ug
= e 1
u =u.1 +1 " -
i=ye+u,
® = ST (nu) -y (nﬁ) = -y.' (n—l u—l) -y (n—]. Tl_l)
9.3.2 Chromatic contribution formulae.
dn_
a =-yn, i ('Cxll& - n_'11>
- dn
b=-yn_ 1 (Q. - _i)
-1 n n_y
9.3.3 Third order surface contributions. '

MIL-HDBK- 14

9.3 SUMMARY OF EQUATIONS USED IN THE CALCULATION OF THIRD ORDER ABERRATIONS

5-(56)
5-(57)

5-(56)
- 6=(3)

- 6-(6)

6-(32)

6-(35)

8-(5)

8-(13)
_footnote

- 8-(4)
8-(11)
' 8-(12).
8-(13)

8-(14)

8-(4a)
8-(11a)

8-(12a)

8-(132)

8-(18)
8-(19)
. 8-(20)

8-(21)
8-(21a)
8-(22)
8-(23)
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10 AN APPLICATION OF THE METHOD OF LENS DESIGN
10.1 STEP ONE - SELECTING THE LENS TYPE

10.1.1 The Taylor triplet. In order to illustrate the procedure described in Section 9, we shall now work
through the design of a particular type of lens. The lens selected for illustration is the famous triplet, often
referred to as the Taylor triplet. It is named after H. Dennis Taylor who first described how he was able to-
correct astigmatism and field curvature by using three air spaced lenses. His system consisted of-a negative
lens between two positive lenses. :

10.1.2 Reasons for selection. The triplet lens system is a fundamental type, for there are enough degrees
of freedom to specify the first order properties and to control all the first and third order aberrations. First
order properties includes the focal length and the optical invariant. First order aberrations are axial and
lateral color, and Petzval curvature. Third order aberrations are spherical aberration, coma, astigmatism,
and distortion. This lens illustrates most of the problems encountered in the design of any optical system;
many of the other types of lenses are merely derivatives of the basic triplet. .The triplet has been used ex-
tensively in optics; there are probably more such objectives used in photographic instruments than any other
type of lens. In describing this design procedure it is hoped that the logical design of an objective can be
illustrateds; at the same time it will be shown how exceedingly involved the design of a lens can become if it
is necessary to arrive at an optimum solution. ’

10.1.3 Arrangement and notation. The lens arrangement for the trinlet objective is shown in Figure 10.1
with the notation to be used in the following discussion. The lens is to work with an object at infinity and have
a focal length of 10. It will be color corrected for F and C light. The individual lenses are shown as thick
lenses but in the first stages of the design these lenses are assumed to be thin. By selecting this type of lens
(the Taylor triplet), step 1 in the design procedure has been completed. The application of the method of de~
sign will therefore continue with step 2. .

LENS (2) (b) (c)

TOTAL c . o
CURVATURE 2 b Ce ' _ o =0
" CURVATURE ‘
C 2 c 3 C4 [¥ 5 [+ 6 [+ 7
t4
ty —-
THICKNESSf t, tg ' ty te
/,
NUMBER Va 14 Ve EXIT ENgRUgi\IC o)
PUPIL L

Figure 10.1- A triplet objective used to illustrate design procedure.
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'

10.2 STEP TWO - THE FIRST ORDER THIN LENS SOLUTION

10. 2.1 Power and spacing.

10.2.1.1 The first problem is to decide on the power and spacing of the elements. Thisi is a lens system
composed of three thin elements; therefore we immediately set up a thin lens table of the type shown in Table
6.14, and start to fill in the known quantities as shown in Table 10.1. At this stage nothing is known about
the design, except that the object is to be at infinity (u, = 0) and the focal length should be 10. Since
yi may have any value, we choose 1 for convenience. From Equation 6-(13) if ' = 10 and y, = 1

then uy.; =

-0.1. The computing table appears now as shown in Table 10. 2.

'

Entrance

Lens (a) Lens (b) | ; Lens (c) Focal -
SURFACE Pupil Plane
NO. 1 2,3 4,5 6,7 k
f e ————————— —————— ——+—

- 0 0

t

y 0

u

v 0

I

{

i

Table 10, 1- Computing table 1 - quantities known at:' start of procedure.

i

i

Focal

Entrance | Lens(a) | Lens (b) | Lens (¢)
SURFACE Pupil Plane

NO. 1 2,3 4,5 6,7 K
—¢ 0 0

t

y 1 1 0

u ] 0 -0.1

y 0

i1

T
{
|
i

Table 10, 2- Computing table 2 - first order assunipfions added,

10.2.1.2 In order to specify thelateral color for F and C light, the conditions given in Equation 6-(41)
must be fulfilled. Thus, « : ‘

1 V. ., ¢ v, ¥, 9 vy, ¥, ¢
Tchg_c m[aaa+bbb c "¢ ¢ .

Va ¥p Ve
K Tchy o isto be zero, then

Ya Ya ¢a Yp Yn ¢b + Ye Yo ¢c
Va Vb Ve

10-2
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If we assume the condition that the chief ray shall pass through the center of lens (b) (not as shown in
Figure 10.1), then y, = 0, and

y. v. ¢

“a_"a a. = - Yo Ye ¢c . !
Va Ve
Equation 6-(24) shows thatin a thinlens y9¢ = (u.; - u), which is the angular deviation that the axial
ray experiences as it passes through the lens. If R is defined as
Va %
yc ¢c ’

the condition for zero lateral color is then.

ia_ = . 1 wva |
Ve R Ve
Since the chief ray passes through the center of the thin negative (b) lens, it is undeviated. Therefore
Yy ¢b = 0, and ('ﬁ_l -ﬁ)b = u, - ﬁs = . Then . -
B .. j_a- - 1 vy
t5 Yo R v,

10.2.1.3 Up to this point, no decision has had to be made with respect to the type of glass. At this point it
is necessary to decide on v, /v e * Any ratio may be used, but up until the present no one has been able .
to prove any advantage to a ratio other than 1. If the same glass is used for both lens (a) and lens (c), then
va /ve = 1. This choice has the practical advantage that the lens maker does not have to worry about two
different glasses for the positive lenses. (Any designer who uses two elements that look alike but are of
slightly different index and/ or dispersion can fully expect to find the elements switched in the prototype!)
With no positive evidence indicating that v, / v, needs to be other than 1, the design will proceed with .
glass (a) and glass (c) the same. Then it follows that . : oo

1

t3 = R t5 .

10.2.1.4 Next, it is necessary to chooge a value of R . Sucha value may be selected for any number of
reasons. For each value of R there are many solutions (designs). In the following study an attempt will
be made to show how the choice of R affects the design, but in order to proceed with the numerical example
it is necessary to assume a value of R . Later (Paragraph 10.3.2. 3) it will be shown that R should be
near 1. This means that the (a) lens will bend the axial ray through the same angle as does the {c) lens. It
follows then, that if a value can be assignedto ug , the angle the axial ray makes with the axis after
emerging from the (a) lens, then the angle -ug is determined. (This means if u, is assigned, then all
the angles the axial ray makes with the axis are known). For example, if ug is made -0.20, thenit
follows immediately that u; = 0.10 because uw, ; = u; = -0. 1.

10.2.1.5 The computing table may now be filled out as shown in Table 10.3. It is still not possible to com-
pute ¢, , ¢p, $c, andcompletethe table. At this point it is necessary to make another guess. Let the
guess be that the space t3z willbe 1; then tg must also be 1. Now the system is completed and' ¢‘,," .
¢, , and ¢, are determined using Equations 6-(23) and 6-(24). The values are shown in Table 10.4,
which is filled out completely. To trace the chief ray any angle may be assumed for it while it passes through
the (b) lens. Inthe example, up = 0.5 was used.

10.2.2 Glass types.

10.2.2.1 So far the only decision on glass is that (a) = (b). Now we must specify the type of glass to use
for (a) and {c), and for (b). The glass types are chosen now in order to specify both axial color and Petzval
curvature. When the glasses are chosen, TAch is calculated by Equation 6-(40). This calculation is
illustrated in Table 6.13. The Petzval sum, ZP, may be calculated for each lens from Equation 8-(28)
and summed for the (a), (b}, and (¢} lenses.

.10.2.2.2 The choice of glass is a critical part of the design of a triplet. It is hoped that this will be demon-
strated in the following study, but in order to show this, the glasses will be picked from experience. The

. following glasses will be used:

10-3
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np V
Lens (a) 1.620 60.3
Lens (b) 1.617 36.6
Lens (c) 1.620 60.3

Entrance | Lens (a) Lens (b); Lens (c) Focal
SURFACE Pupil ‘ ' Plane
1 2,3 4,5 . 6,7 k
-9 0 0
t 1 1
y 1 1 3 0
u 0 0 -0.2 0.1 -0.1
y 0 ]
u

Table 10. 3- Computing table 3-quantities for zero lateral cblor, v /y=1, and R =1 , added,

| E

" | Entrance | Lens (a) (Lens (b) | Lens (c) Focal
| SURFACE Pupil ‘ Plane
1 2,3 4,5 6,7 k
-9 0 ~0.2 0.375 -0.222 0
t -1,25 1 1 9
y 1 1 0.8 0.9 ]
u 0 0 -0,2 ‘0.1 -0.1 .
¥y 0 ~0.5 0 0.5 4.0
o 0.4 0.5 ‘0.5 0.389
1 i i i i :
F=10 |

Table 10, 4~ Computing table 4 - assignment of quantities completed.

!
10.2. 2.3 With this glass type data it is now possible to compute TAch and ZP. The calculations for
the sample are included in Table 10.5.

10.2.2.4 The values of TAch and ZP are plotted in Figure 10t. 2. The dot with a surrounding square,

© , indicates where the solution should be for TAch = 0 and ZP = -0.03. At this point it will
be necessary to merely accept the fact that ZP is set at -0.03. (A negatwe value of ZP indicates a
negative value for the Petzval curvature. In the case of the triplet example here considered, the field is
concave toward the lens and is referred to as an inward curving field.) The next step is to assume a new
value of tz . For example, suppose we pick a value of 1.25, and repeat the process to arrive at a new
value for TAch and ZP. This point is also plotted in Figure 10.2. Next, set uz = 0.18 and re-
peat the process with t3 = 1.0 and 1.25. The procedure for {inding the values of u4 and ty
which will provide a solution follows obviously. With a small amount of practice one can box ina de51gn in
this manner in very short order. This is an iterative procedure whlch can also be programmed for auto-
matic correction on a computer. The graphs obtained in this manner are extremely useful for visualizing
how 0 readjust the angles in the lens after the thickness has been ag!ded (step 4).

i

1
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SURFACE Lens (a) | Lens (b) Lens (¢) | Focal Plane

- -0.2 0.375 -0,222: 0

t

y 1 0.8 0,9 0

u 0 -0.2 0.1 -0.1

-

ki)

v 60.3 36.6 60.3
-0y2 /v | -0.00332 0.00656. | -0.00299 | Za= 0.00026
- % =0. 12346 0. 23191 -0.13717 | ZP= ~0.02872

TAch = 0.0026

Table 10.5 -Computing table 5 ~ calculation of TAchand ZP .

10.2.2.5 This boxing in procedure is recommended for the preliminary set-up using thin lenses in design-
ing a triplet. The procedure works equally well for more complicated lenses, and it provides the designer
a graphical picture of how the variables affect the system. For those who prefer to manipulate algebraic
equations a procedure similar to the above can be worked out to provide equations to be solved. Existing-
literature is adequately filled with methods of this type. A few of the well known papers are: ’

(1) Berek, M., Grundlagen der Praktischen Optik, Berlin, 123-130, (1930).

(2) Stephens, R. E. J. Opt. Soc. Am. 38, 1032 — 1039, (1948).

(3) Lessing, N., J. Opt. Soc. Am. 48, 558-562 (1958).

(4) Cruikshank, F. D. Rev. D'Optik 35, 292-299 , (1956).

(5) Cruikshank, F. D. Australian J. Physics 11, 41-54, (1958).
A series of solutions for triplets with different types of glass has been worked out. The significant data

for these systems are included in Table 10.6, sheets 1, 2and 3. The glasses used in this study are shown
plotted in Figure 10.3 on an np versus v plot, which is used extensively by lens designers. The num-

bers alongside each point indicate the system number. The table includes caleulationsfor R = 1, 0.5
and 2. One solution was calculated, for each set of glasses, using a target value of ZP = -0.03. Notice
that there are examples where (v, - v, ) is constant but (n, - ny )} changes.

10.2.3 Summary of thin lens first order study contained in Table 10. 6.

v, -V & increased, the system length, R ways increases.

(1) As w, - v, isi d, the system length, T, al

(2) R = 1 systems are always shorter than systems with - R = 2.0 or R = 0.5.
(3) Changing ZP from -0.03 fo -0.02 shortens the system.

(4) Changing the index of the crown and flint elements, while maintaining the v
difference, has little effect on the overall length T.

(5) As one would expect, the higher the index of the positive elements, the lower the
power of all the elements.

(6) Solutionsfor R = 2 and R = 0.5 are essentially inverted solutions..

t3 and tg are almost exactly interchanged. Also, 9, is changed by
the ratio of 1/R.

10-5
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O ol i
a and c lenses 620603 ]
blens 617366
R = 1.0
ug = -0, 205 0. 003
Et, = 1.00
u, = -0. 18} . 002
.001
-y -‘ -
L;ié.é i@}sﬁ ution o 0
-.001
X
~3x .=-J[- "E%__ solution _: 002
ug = -0.185 §
ty =1.173
-.003
e
-0, 05 -.04 -.03 -.02 -.01 0

i
i
|
|

Figure 10, 2- Diagram used to find a thin lens f:irst order solution,
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10.3 STEP THREE - THE THIRD ORDER THIN LENS SOLUTION

10.3.1 Evaluation of third order coefficients.

10.3.1.1 With the thin lens first order equations worked out sothat ¢ , ¢p, 9¢c , t3 and tz -are
known, it is now possible to evaluate the coefficients in Equations 8-(36) through 8-(39) for each lens. In
order to simplify the equations, the chief ray is again chosen to pass through the center of the (b) lens.
Then the problem is to solve the following equations:

Bf + B, + Bt = IB = 0 Q)
F* + F, + F*¥ = ZF = 0 (@
Cf + C, + C¥ = ZC = -% zp ¢ -(3) -
Ef + 0 + Ef = ZE = 0 ‘ (4)-

10.3.1.2 The value of ZC was not set equal to zero because ZP is not zero. Instead the value of
ZC is chosen to make tyr = 0, as it is defined in Equation 8-(9). For these equations,

Bf = aff + a% c, + af cz2 (3)
B, = @ + a, ¢, + @, 042 Note: The a's are . (6)
Bt = af + a% cg + a% c.2 different for each lens. )
F4 = BY + By cp + B cy? ®
Fp, = By + By ¢y The PB's are different (9)
F¥ = BY + B3 cg + BY cg2 for each lens. (10)
C¥ = 7Y + 75 cy + vi c,2 © (1Y)
Cp = - 9y $? The 7's are differen.t (12)
C¥ = ¥ + v3 cg + v} c62 . for each lens. (13)
Bf = 85 v 0f cp v 0% cp? o
E, =0 . The 08's are different (15)
E: = 5’{ + 5;: c, + 6; 062 for each lens. ‘ (16)

This appears like a rather formidable array of equations to solve. But the problem can be tackled by a com-
bination of algebraic and graphical solutions, and enough common sense to realize that there really is little
point in trying to find an exact solution for thin lenses anyway. Any solution for thin lenses will be changed
as soon as thicknesses are added.

10.3.1.3 The problem is approached by noting that the astigmatism of the (b) lens, C; , is constant and
does not depend on the bending of the lens. This means that Equation (3) in this section can be ertten in two -
variables, ¢y and cg . By using c, as a free variable, and choosing a numerical value of c2 » Cg
may be found by solving a quadratic equation. If there are two real solutions one must choose between the
positive or negative sign before the square root. In all the work to follow, the positive sign has been taken
for the solution. The solutions provided by the negative root are not promising optical systems, because the
lens surfaces have too high a curvature.

10.3.1.4 With ¢, and cg; determined, Equation (2) becomes a linear equation which can be solved for
a single value of ¢4 . Now ¢, , ¢, , cg are determined, so Equations (1) and (4) determine ZB
and Z E. This procedure may then be repeated for several values of €y . The values of ZB and ZE
should then be plotted on a graph with ¢, as the abscissa. A plot of this type is illustrated in Figure 10.4.

The ordinates of this graph are ZB/2 (n,_; u ) = 3Yy and ZE/2%® = F.D., whicharethe
actual transverse third order spherical aberration and the fractional distortion. The thin lens coefficients
were compiutedusing y;, = 1 and u; = 0.3. Therefore, the graph in Figure 10.4 shows the spheri-

cal aberration and fractional distortion for an f/5 system w1th an image height of 3.0. The graphs in
Figure 10.4 show that there are two solutions where the spherical aberration is zero, while the fractional
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distortion is positive for one and negative at the other. The solution with the smaller value of c¢3 has the

. least amount of distortion.

10.3.1.5 Curves of the type shown in Figure 10.4 have been worked out for all the systems included in sheets
1, 2, and 3 of Table 10.6. An attempt to summarize the data is included in Table 10.6, sheets 4 and 5. In
nearly every case, the curve for spherical aberration can be represented by a parabola, while the distortion
curve can be approximated by a straight line. The data in Table 10.6, sheets 4 and 5, give the information
defining the constants of the parabola and the slope of the straight line. For practical purposes, all the para-
bolas and straight lines can be fitted to the same constants. Therefore,

2

Ve = -2.0 (e; - €5 vortex )t 3¥k vertex °

3k

In the tables, €, , €4, and cg are given for the vertex of the parabola. Therefore one can calculate -
cy , €4 , and cg for any desired g¥, from the above equation. Using example 16A in Table 10.6,

sheet 5, the values for €y s C4» and g for 3Yk' = 0 are given by
0 = -2.0 (c, -0.3380)> + 0.016, cp = 0.249
and .427
0 = -2.0 (c, +0.2057)% + 0.016, ¢, = -0.295
' and -.116
0 = -2.0 (cg -0.0780) + 0.016, ¢ = -0.011
and . 167

10.3.2 Analysis of the data.

10.3.2.1 Notice that the ¢ values for = 0, calculated above, do not agree with the data in
Figure 10.4, where c4 0.262 and 0. 41% This is because the equation of the parabola has been
simplified to meet all the cases. The slight discrepancy is of little concern at this step of the design, for
introducing the thicknesses will change conditions anyway. These figures, therefore, give adequate starting -
data for the next step of the design. However, before proceeding, the following features of the data in Table
10.6, sheets 4 and 5, should be observed.

(1) Changing the value of R from 1to 2.0, or from 1 to 0.5, has the effect
of moving the parabola downward, with a horizontal vertex shift towards
increased cg valuesfor R = 2.0, andtoward decreased c, values
for R = 0.65.

(2) Changing R from 1.01t0 2.0, or from 1to 0.5, has the effect of moving
the F.D. versus c¢5 curves upwardfor R = 2.0, and downward for
R = 0.5 withno appreciable change in slope.

(3) Decreasing ZP from -0.03 to -0.02 has the effect of moving the parabolas
upward, with little effect on the F.D. curves.

10.3.2.2 The g3Yi and F.D. curves for the same solution for values of R = 2 and 0.5, are shown
in Figure 10.5. At some value of R (about R = 0.80), the distortion curve and the spherical aberra-
tion parabola will intersect each.other at 0.0 for a c, value around 0.27. Foran R about 1.5, the curves
cross again at 0.0 for a value of ¢, = 0.35. This means that if R is variable, there are two solutions
corrected for both spherical aberration and distortion. Since ZP, ZC, and ZF are specified for all the
curves, these two solutions are then completely corrected to the desired third order aberrations. The solu-
tion with the smaller value of ¢, will be referred to as the left hand triplet solution, while the other solu-
tion will be called the right hand solution.

10.3.2.3 If glasses with larger Ay are used, the parabolas are lowered and the two solutions approach
each other on the c¢a plot, the final single solutions tend towards a value of R slightly greater than 1.0.
The indices of the elements seem to have only a secondary effect on the design while the Awvp difference
has a very significant effect.

10.3.3 Ray trace analysis. The designer cannot be sure from the thin lens data how to choose from all the
possible choices of glass. There are a very large number of triplets for which the third order distortion
and spherical aberration are zero; and the number, of course, is unlimited if distortion residuals are
allowed. The only way to really check on the advantage of one design over another is to ray trace the vari-
ous possibilities. One instinctively feels, however, that if the left hand and right hand solutions can be made
to come together that this design will be a good solution. Under this condition the spherical aberration para-
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bola and the distortion curve intersect at the maximum of the parabola. Therefore the solution will be some-
what insensitive to changes in curvature, and consequently should be less sensitive to errors in manufacture.
Later work on ray trace resulis will also substantiate that these solutions are preferred to others.

10.3.4 Summary of thin lens design for a triplet objective.

(1) There are two main solutionsfor B = F = E = 0 and Cmﬂ: - % P&°.
One solution is called the left hand solution, (R < 1). The
> 1)

other is the right hand solution , (R

(2) These solutions are brought together to form a single solution, by increasing
the Avp between the positive elements and the negative element. The R
values also converge to a value slightly greater than 1. It is believed that
this provides a near optimum solution.

(3) Ifthe Av is made too large, there is no solution.

(4) If the value of 2P is made more positive, the two solutions (if they exist)
separate, and in order to bring them together again, the Ay must be made
greater.

10.4 STEP FOUR - THE THICK LENS FIRST ORDER AND THIRD ORDER ABERRATIONS
10.4.1 Lens thickness.

10.4.1.1 Introducing the proper thicknesses in a lens system is also a problem. One has to be sure the
positive lenses are of large enough aperture to pass the necessary rays, and the negative lenses have to be
made thick enough to resist warping during manufacture. The thickness of the negative lenses can be usu-
ally assigned quite easily by adopting the rule that a negative lens should not be thinner than 1/10 its di-
ameter. This usually provides a lens with sufficient strength. In special cases thinner lenses can be made
if there is a real need for it; hence this rule is merely a guide. ) :

10.4.1.2 The positive lens thickness is more difficult to ascertain because it depends on the system. . It is
necessary that the system be almost completely designed before deciding on the diameters of the positive
lenses. The designer usually vignettes the oblique beams by cutting the clear aperture of some of the posi-
tive lenses. He seldom makes the pogitive elements with clear apertures large enough to pass the complete
oblique beams. Drawings of the lens with pictures of the rays passing through it are very useful in visu-
alizing the thickness required. After the clear apertures of a lens are determined it is still necessary for
the diameter to be somewhat larger in order to take care of the edge thickness and mounting rims. When
the maximum diameter is known, the thickness is calculated using the thin lens curvatures.

10.4.1.3 Rules for the increased diameter needed to mount the lens vary from shop to shop; thus the prob-
lem of lens mounting is a subject in itself and will not be treated here. A designer will have to learn these
things through experience, although a shop practice manual may help. The designer must remember, how-
ever, that shop people have a natural tendency to resist doing things differently. A designer can miss some
good designs if he lets shop people talk him out of a very thin lens, or a glass that is difficult to handle. -
Formerly designers also had a tendency to resist change, insisting on sticking with their design simply be-
cause it was so difficult to recalculate. Today, with modern computing machines, there is no excuse for
this. It is now very inexpensive to redesign a system completely just to provide a bit more thickness if it
is required by the shop people. There are, however, times when the designer needs a thin element for the
reduction of weight or to fit into a tight spot, or an expensive hard-to-handle glass may be required to opti~
mize the design. The designer today can back up his design with proof, so he should be able to violate some
shop rules. :

10.4.1.4 In order to proceed with the thick lens system, the problem of assignment of thickness will not be
discussed further. For the present example thicknesses will be inserted without further explanation.

10.4.1.5 The thin lens first order study of the triplet was started using the glasses 620603 for the crowns,
and 617366 for the flint, System No. 16. The thin lens third order study shows that the spherical aberration
parabola for these glasses extends far above the zero axis. The two solutions are therefore widely separa-
ted. For this reason, it appears that the parabola should probably be lowered. This can be done by choosing
a flint with a lower » value. The thick lens set-up is, therefore, System No. 17 in Table 10.6, sheet 2,
with 621362 glass for the negative lens. Using the data froni Table 10.6, sheet 5, and the parabolic equation,
it is possible to compute the first curvatures for the two solutions with R = 1 for zero spherical aberra-
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tion. These thin lens solutions are as follows:

Left Hand Solution ] iRight Hand Solution
c, = 0.26 | e, = 041
cg = -0.§8 !04 = -0.13
cg = 0.016 %ée - 0.2
t; = 1.28 ?t3 = 1.28
t, = 1.28 t, = 1.28

10.4.1.6 The angle the axial ray makes with the optical axis may be computed from the data in Table 10.6; -
sheet 2, by setting up a table as in Table 10.4. The values of $; and tg are known; therefore the table

is completely determined.

10.4.1.7 As soon as it ig necessary to assign thicknesses, the designer has to decide on the f-number and '
the focal length of the lens. For the following study, it will therefore be assumed that the diameter of the

enirance pupil will be 3 and the focal length 10. It is also important to assign a maximum field of obliquity
for the lens. Let this (object field) be 20° half angle. . - .
|

10.4.1.8 The axial paraxial ray should therefore be traced through the system as follows:

) |
v, = 1.5 :

The thin lens axial ray trace for this example then appears as in Table 10. 7.

SURFACE 1 2,3 4,5 | 6,7
-¢ 0 ~0.184 L 0.347 [—0.210.
t ' 1.24 1.24 :
y 1.5 1.5 1,158, 1,314
u 0 -o.lz'zs 0.I126_ -01.15

' | '
Table 10.7 - Thin lens solution for example 17A in Table 10, 6.
% |

i

I

10.4.2 Computing the thick lens golution.

10.4.2.1 The thick lens is then set up using the values Cys € 4 sy Cpn» t3 and ‘t 5 for either the right
hand or the left hand solution with the thicknesses of the lenses inserted. For this example the positive
lenses are assigned thicknesses of 0.6 and the negative lens a thickness of 0.25. )

| - Tl B
10.4.2.2 The second curvatures of the lenses are then computed to maintain the paraxial angles, shown in
Table 10.7, between the lenses. The spaces between the lenses may at this time be set at about 1.0.

, i ! . ‘
10.4.2.3 With this initial system, the first order and third order contributions are calculated as shown in
Table 8. 2. '

10.4.3 Iterative analysis and adjustment. | '

10.4.3.1 As the formalized step-by-step piocedure of Section 9 is followed through the remaining steps, it
is necessary to examine results and repeat, with changes, earlier steps in order to balance the higher order

I
1

i

I

|
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aberrations. This iterative appraisal and recomputation is the means by which the design can be refined and
developed to the desired degree. The mechanics of computation are well described in the foregoing sections
and will not be repeated in detail. '

10.4.3.2 This discussion, then, will be devoted only to the examination and interpretation of results and to
the analytical processes which dictate the iterative changes as design refinement proceeds. With this orienta-
tion in mind, and also remembering that by properly programming an automatic computer, the results of one
run will produce much of the data necessary for analysis, the discussion will proceed.

10,4.3.3 Next comes the problem of ray tracing, analyzing, and readjusting the lens to the desired third
order aberrations. The recommended procedure for doing this is to make small changes in the system and
solve Equations 9-(1) through 9-(7). A procedure of this type has been programmed for the I. B.M. 650
computer, and with this program the foregoing triplet system has been studied extensively. A brief account
of this study is presented below. ' '

10.4.3.4 First it was decided that the quantities ¢, , t3, ¢4, tsz , ¢ would be usedas va;rigbles".
This provided only five variables so it was necessary to provide another variable in order to correct the six
quantities B, F, C, P, a, and b. cy was used as the extra variable, meaning that the solution de--
parted from R = 1. It was possible with three iterations to find the left and right hand solutions, but
neither of these solutions were ray traced because it was not possible to tell what value of R the final solu-
tion would have. Therefore, it was decided tolet ¢ also vary. This provided an extra degree of freedom
so the distortion was corrected. In other words, R “was allowed to be a variable for the purposes of correct-~
ing distortion. In other words, with the seven variables c5 , ¢33, tg, €4, ts, cg, and R, the seven
aberration coefficients, B, F, C, P, E, a, and b could be specified. As one would predict from the
grapbs in Figure 10.5, two solutions were found. This same technique was used in the further study of this
lens; hence all the solutions are corrected to exactly zero third order distortion. It was thus possible to com-
pare several designs by varying single parameters, and the third order aberrations could be brought to pre-
cisely the required values.

10.5 STEP FIVE - TRACING A FEW SELECTED RAYS

10.5.1 Analysis of the ray tracing results. One finds immediately upon ray tracing that the first and third
order aberrations should not be set to zero. The reason for this is that high order aberrations are always
present and the third order aberrations have to be set to compensate for them. "For example, if the triplet
is corrected with ZB = 0, the raystracedat Y = 1.5 will strike the paraxial image plane at large
positive values indicating that the high order aberrations have over-corrected the lens. This is also the
reason why ZP was made equal to -0.03 instead of zero. The same is true with respect to color aberra-
tions. Im the triplet it turns out that ZF, ZE, and Zb can be set at zero, but the remaining ones, ZB,
ZC, ZP, and a have to be set at negative values. ‘

10.5.2 Target values and solutions.

10.5.2.1 Early in the study of this system it was found that the value for ZP had to be changed from -0.03 -
to = -0.035 and the spherical aberration had to be under-corrected to ZB = -0.006. The first solutions
showing interest were computed with the following target values for the third order coefficients:

ZB = -0.006

ZF = 0

tc = -1 pacz
3

ZE = 0

ZP = -0.035

Za = -0.0004

Zb = 0

The chromatic aberrations were left small and unchanged throughout, since the study was done primarily to -
show how the monochromatic aberrations are corrected.

10.5.2.2 With these target values, two solutions were found. The lens data are included in Table 10.8.
The data include the overall thickness T of the lens. Aberration plots similar to Figure 9.1 are shown
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in Figures 10.6 and 10.7 for the two solutions.

Left Hand Solution Right Hand Solution
c t c t
0. 2209 0.3116 .
0. 600 ! 0. 600
-0.0124 -0.0282
1. 3949 i 0.8572
-0. 2407 -0.1734
0.2500 : 0. 2500
0. 2606 0.3319
0.9631 ; 1.628
0.07177 0.0683
‘ 0.600 i 0.600
-0.2822 -0.1891
8.453 . 7.599
R = 0.7685 =1.82
T = 3.808 =3.935

A , | T
Table 10. 8 - Left and right hand solutions for a.1 triplet with P = -0, 035.

10.6 STEP SIX - READJUSTING THE THIRD ORDER ABERRATIOI\LS
| |

10.6.1.1 The aberration curves show that the merldlonal rays depalrt from third order drastically at 20°

In the lens designer's language, the tangential field has pulled in rap1d1y. On the other hand, the sagittal
field has moved back relative to the third order field by a much smaller amount. These lenses cannot per-
form well beyond a 15° half angle. The sagittal rays tend to follow the third order curve much more closely
than the meridional rays. Notice also how the skew fan appears similar to the axial fan, but over-corrects
in spherical aberration as the field angle increases. The left hand solution appears to be somewhat better .
than the right hand solution at 20°, but there is little to choose between them at the smaller field angles.

10.6.1 Analysis of the aberration curves.

10.6.1.2 It can be seen from Table 10. 8 that the left and right hancl solutions are widely separated on the

c, scale. This means the spherical aberration parabola should be lowered. Now this can be done by many
methods. One way is to increase Av by changing the glass in the flint element. The 649338 glass could

be used. However, as the thin lens data indicate (System No. 18), this would lengthen the system and the
result would be that the tangential field pulls in even faster. An additional disadvantage is that the 649338
glass lowers the parabola so far that there is no solution with the present glass thicknesses. A second method
of lowering the parabola is to make the Petzval sum more negative. One might think at first that this would
make the system longer, which is likely to make the tangential fle].d pull in even more, but if the parabola is
lowered, the R values will be closer to 1, and the thin lens study showed that for this value of R, the sys-
tems are the shortest. Therefore, makmg zZp = -0.040 probably will not make the system much longer.

10.6.2 Readjustment procedure.

|
10.6.2.1 The value of ZP was therefore changed to-0,040,and solutions were founc'l with all the other
aberrations 1dentically the same. The two solutions and the aberrahon plots are shown in Table 10.9, and

Figures 10.8 and 10.9

10.6. 2.2 The aberration curves now show real improvement. The skew ray fans for the two solutions are
quite similar. However the left hand solution appears more symmetrlcal than the right hand solution, and

at 20° it is definitely superior. The R values are now closer together and the barrel length, T, is actu-
ally shortened. Notice that the left hand solution is shorter than the right. This may be the reason why the
tangential field pulls in further with the right hand solution. Notice also that the left band solition has a value
of R closer to 1.0 than the right. If the parabola were lowered still further, the two solutions would con-
verge to a single solution with R > 1 as predicted from the thlp lens system.

|
|
|
|
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Figure 10.6- Aberration plots for left hand solution of lens‘es in Table 10.8.
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Figure 10. 8- Aberration plots for left hand solution of lenses in Table 10, 9.

-10-23



0.01

-0.01

MIL~HDBK~141
i
|
|
1
0 3, 65HEHE
3, 64
3, 6
159 : A
:E )
I“‘ H
0°;
00
-0. 01 5
. Hh
-1.0 -0,7-0.5 .0 -0.1 0 0.1

Yl/ Ylmax.

0.50.7 1.0 -0.2
|
|

Figure 10, 9- Aberration plots for right hand “solution of Ienses in ;'fatil?e 10. 9.

10-24

|

AN APPLICA'iZ‘ION OF THE METHOD OF LENS DESIGN



AN APPLICATION OF THE METHOD OF LENS DESIGN MIL-HDBK-14}
Left Hand Solution Right Hand Solution
c t c .

0. 2339 0. 2882
0.60 0.60
-0.0098 -0.0193
1.211 0. 8900
-0. 2107 : -0. 1641
0.25 0.25
0. 2516 0. 2998
1.016 1.426
0.06799 0. 0650
0. 60 0.60
-0. 2556 -0. 1963 )
8. 363 7.847
R = 0.9003 R = 1.493
T = 3.677 T = 3.766

Table 10,9 - Left and right hand solutions for ZP = -0.040,

10.6.2.3 At this point, it was noticed that the system still was not as good as that described in Table 8.2.

It was finally apparent that the thickness of the negative lens was 0. 15, instead of 0.25. This indicated that
the aberration parabola was lowered in this solution because of the decreased thickness of the negative lens.
Then a new solution was found and the only change was to make ¢t = 0.15. The result is that left and
right hand solutiong have R values 0.987 and 1.363. They are 3rawing closer together and the tangential
field does not pull in as rapidly. The surface data for these solutions are included in Table 10. 10 (step seven).
Figures 10.10 and 10. 11 show spot diagrams for these two solutions. In these diagrams only half of the sym-
metrical image is shown. The diagrams include the appearance of the images as the foeal plane is shifted,
clearly showing how a shift towards the lens provides a better concentration of light than in the paraxial focus.
These diagrams show that there are only slight differences between the imagery in the left and right solutions,
out to a half field angle of 15°. However, beyond 15° the left hand solution definitely is superior to that of the
right hand. Notice how it shows better concentration and is more symmetrical.

Left Hand Sclution Right Hand Solution
c t c t
0. 2469 0.283
0. 60 0.60
-0.00775 -0.01227
1.128 0.9289
-0.2024 -0.1692 .
0.15 ‘ 0.15
0. 2568 - 0.2911
1.0738 1.3209
0.0608 0.05869
0.60 0.60
-0. 2487 -0.2113
8.346 8.033
R = 0.987 ' R = 1,383
T = 3.552 T = 3.5998

Table 10, 10 - Left and right hand solution for ZP = -0. 040.
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10.6.3 Analysis of the readjustment procedure.

10.6.3.1 This study showed that reducing the thickness of the negative lens lowers the spherical aberration
parabola. This effect then suggested investigating the effect of varying the thicknesses of the positive lenses.
The effect is the same, namely lowering the parabola, but not as marked as in the case of the negative lens.
This technique of changing the thicknesses of the lenses can be a useful way to compensate for the fact that

the parabola is not quite where it should be. The parabola could be lowered still further by reducing the thick-
nesses, for the case of ZP = -0.040, but this is not practical. ‘ -

10.6.3.2 It is interesting to notice, that in these solutions for the triplet, e, is close in value to e, ,

and c4 iscloseto cy . For the left hand solution these four surfaces have approximately equal curva-
tures. It would be very interesting if a solution could be found where all these four curves are identical.

10.7 EVALUATION OF OVER-ALL PERFORMANCE

The design of the optimum triplet is still far from complete, for one must investigate these images: .
carefully by calculating the spot diagrams and energy distributions to be sure the best values for ZP, zc,
SF and ©B have been chosen. To do this in detail is an enormous task which realistically can.only be done
on a very large computer. However with patience and judgment it is possible for designers to arrive at very
good solutions. : -

10.8 SUMMARY
10.8.1 Guide lines. This study has indicated a few guide lines to follow in designing a triplet.

(1) One should always try to design as short a lens as possible to cover a given field.

(2) The spherical aberration parabola can be raised or lowered by the choice of ZP,
thicknesses of lenses, or glass.

(3) It appears that near optimum solutions occur with an R value slightly greater than 1.

10.8.2 Unsolved problems. The study made on this lens merely initiates the reader to the possibilities
which need further clarification. A few of the problems are: ’

(1) What happens as the index of the crown element is increased ?

(2) What kinds of solutions can be obtained by first lowering the parabola by glass choice
‘so that there is no solution and then raising the parabola by thickness choice ? '

(3) What effect has raising the index of the negative lens if Ay is maintained constant?

(4) When the parabola is too high, is it beneficial to lower it by using aspheric surfaces?

(5) What happens if the number of elements is increased beyond three, and at the same
time two or more are cemented together? What happens if the negative element is
cemented to either or beth positive elements? ,

(6) X the lens is to cover a wider field, how does one choose the glass?

(7) At finite conjugate will the effect of glass choice and lens thicknesses be the same
as at infinite conjugate? :
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11 TELESCOPE OBJECTIVES
11.1 INTRODUCTION

11.1.1 Scope. Sections 11 through 15 will be devoted to the demonstration of design principles using the
simple telescope as a working example, Section 11 will discuss the detailed design of objectives; Section 12,
lens erecting systems; Section 13, mirror and prism systems; Section 14, eyepieces; Section 15, complete
telescope. It is assumed at this point that the reader has studied all the foregoing material and now has
considerable knowledge of optical design. The inexperienced reader should not be concerned if he does not
fully grasp the following material on first reading. As he gains experience it will become more and more
useful.

11.1.2 The complete telescope. In describing the telescope, it will be assumed that the object is at infinity
and thaf the eyepiece will be focused to place the virtual image at infinity. This means that the distant object
will be brought to focus or imaged at the second focal point of the objective and that the first focal point of the
eyepiece will coincide with this image. The telescope is then said to be in afocal adjustment. . -

11.1.3 The Petzval curvature of the system.

11.1.3.1 To start the design of an optical system, one of the first calculations to be made is an estimate
of the amount of field curvature in the system, i.e., an estimate of »P. This is done by calculating ' P
for each surface using Equation 8-(14), and summing. From Equations 8-(15) and 8-(18), if ZB, >F,
and =C are all zero, then

*

T 2 . \2
o = ( Ly _ _bra ) _ P& ( Yl.) ( Yo ) "
v My M, ., Mgy Ve AR A Yo :

K P &2 X T\ S
T (S)()
x My 1 2ngy Y k1 Y1 Y, .

These equations show that P introduces angular aberrations, a and a, , whichare linearly propor-
tionalto Y,/y, andto X;/y; . This means that for ‘oblique’object points the fan of rays entering the
objective from a distarit object point, do not emerge from the eyepiece as a parallel bundle. Instead the rays
come to a finite focus. When Y is zero, Equations 8-(15) and 8-(16) indicate that the rays from the
object point do emerge parallel to the axis because the telescope is in afocal adjustment and B = 0. For
the case described by Equations (1) and (2), the amount of the angular aberration varies as the square of
the object height, Y .

11.1.3.2 If the telescope objective is assumed to be thin, then from Equation 8-(28), P = -¢/n. Itis
possible to change the value of P by usinga photographic type of objective, but a simple doublet objective
is by far the most common type of lens used in telescopes. In order to derive a general formula for the
aberration, it is possible to write P, = -9, / vo » Wwhere v, isa constant ranging in value from 1.5 to
w. For a doublet vy, is approximately 1.5.

11.1.3.3 The value of P for the eyepiece also depends on how it is designed, but here again it is possible
to write P_ = —rbe /y e ° Where ¢_  is the power of the eyepiece and v, isa constant depending on
the type of eyepiece. vy, will range in value from 2.6 to 0.7 for most eyepieces.

11.1.3.4 Using these values of P for the objective and the eyepiece, it is possible to compute, from
Equation (1), the angular aberration,

2 2
ng g —2 Yl fi’p ¢e
oy - e ()R )
y k-1 Yk-1 Y Yo . Ye .
Since a telescope is usually used in air, n, and n, _, are 1. Then,
Y Y '
__1f 7o 1 2 -1 1
by = - i(to ) (yl) MP™ ¥4 ¢e( 7 MP_ T 7, ) - 3

*For a telescope with an object point at infinity one should strictly speaking use (tan U,)/u, instead of Yo /Jobut it is-
satisfactory to use the above equations and assume that the object distance is very large but finite.
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This equation shows that the angular aberration due to Petzva} curvature only varies
(1) as the square of the object height,
(2) approximately as the square of the MP, 5
3) linearly with .
(3) linearly Ve,

11.1.8.5 For a given (Yo /t,) MP, the angular aberration in a telescope can be made small by making ¢

or yk_é small, Itis customary to specify the angular aberration of telescopes in diopters using the defin- -

ition = 100a/ Vi1 o where d is in diopters when Yk_i 1isigiven in centimeters und «
is expressed in radians. ; ‘

11.1.3.6 As a numerical example consider Table 11.1 which shows the values of a in minutes of arc .'

and in diopters for telescopes of three different magnifications. To make these calculations the following
assumptions were made: | )

= -0,
V-1 35 cm | \
fo = 2.00cm !
(?o/ t, )MP = -0.6 i
Y /v = 1.0 :
1 1 |
Yo =7, = 1.5

|
The angular aberrations in Table 11.1 are all positive which means that the oblique bundles are focused
behind the observer's eye making it impossible for him to focus on the image. It also means that the eye- .
piece must be focused towards the objective in order to remove the angular aberration for the off-axis object
point. If it is moved towards the objective then the telescope will have angular aberration of the opposite sign
for the central image. This indicates that the observer can accommodate and completely focus-out the angu-
lar error. The large angular aberration due to field curvature in telescopes is therefore not as.serious as it
may appear for it is possible for the eye to change focus as the observer views differeni‘; parts of the field. .

~ MP
| Yo mp -2 -5 -10
to i
-0.6 -9.0 ~7.2 -6.6 Diopters
-0.6 107" 87" | 79"  |Minutes

1
1

‘ . ‘ |
Table 11.1- Angular aberration for telescopes
of three magnifying powers.

11.1.3.7 In military telescopes it is often necessary to insert a reticle in the focal plane of the objective,
Since a reticle is used to measure distances in the object space, it is important to design the objective with
a flat field on the reticle, which usually means that the lens has to be more complex than the usual telescope
doublet objective. Because the Petzval curvature of the eyepiece cannot be made zern, the eyepiece cannot
‘focus the entire reticle with a single setting. Hence the reticle may not appear perfectly sharp, but if the
objective is well corrected there is no parallax between the object and the reticle, ‘

|

11,1.3.8 If a reticle is not needed in the design there is usually very little need to attempt to reduce the
Petzval curvature of the objective by using a compound photographicilens type of objective. Equation (3)
shows that the objective contribution, y, , is multiplied by the magnifying power of the telescope. For
high power telescopes therefore, the objective adds a negligible amount of field curvature. This is why

the majority of telescopes use simple doublets for the objective. If the power of the telescope is low then

one must consider using some type of lens other than a doublet objec]tive. ) |
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11. 2 DESIGN PROCEDURE FOR A THIN LENS TELESCOPE OBJECTIVE

11. 2.1 First order, thin lens.

11.2.1.1 The doublet, of course, consists of two lenses, and one can immediately start to fill out 2 table

as was done with the triplet objective in Section 10.2. This has been done in Table 11. 2.

Lens a Lens b | Image Plane
-¢ -0a -y 0
t 0 _ 1
Pa + 7Y
y 1 1 0
u 1} ~Pa -Pa~%p
y 0 0 [rae
U 1 .1 1
v Vg Vp 0
-4y2/ NN I W -
RS 0 0 Tb=0
-¢/n ~$a/ny “$/np |EP= - $a - 99 :
na nb

Table 11. 2 - Computing table for the thin lens
telescope doublet,

11.2.1.2 In order to solve for (] and have the axial color zero, assuming the two elements are close
together, the following two equations must be satisfied: —
¢a + ‘Pb = %, (4)
apd
o )
2 §o— = 0 . S (5)
a b .

Va _,\
b= b @)
and’
14
O e el @
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By using these equations, the value of TP from Equation 8-(28) is

. @®)

|

11.2.1.3 These equations show that any two glasses with a difference in v may be used to design a
doublet. As will be seen later however, A v should be large in order to reduce the monochromatie
aberrations. In principle the TP may be made equal to zero by the proper choice of glass. Actually,
the ratio [ i

Va yBa - Vp, By )

14 - 14

zp=-¢( -

a

ua/n% - Vb/nb

Va - llb

is pearly constant for any glasses chosen with a reasonable value of - ( u- 4 ). Itis therefore‘ not

practical to attempt to reduce P in a doublet by choosing the proper glasses. Once the two glasses for | : v

the doublet are chosen the following is known about the lens:

(1) The focal lengths of the (a) and (b) lenses, using Fquations (6) and (7).

(2) The axial color, which was set equal to zero using quuation 6-(42). ‘

(3) The transverse color, which is zero, using Equation 6-{41), because th
objective is the entrance pupil. ’

(4) The Petzval curvature, using Equation (8).

(5) The third order astigmatism, using Equation 8-(26).

(6) The third order distortion, using 8—(27).

i
i

Only two aberrations of the third order, B and F, remain uncorre¢ted.

. |

11.2.2.1 As explained in Section 8.10.1, it is possible to compute the coefficients( @ and g ) for the
following thin’ lens equations: .

11.2.2 Third order, thin lens.

Ba =e +a c o+a. clz ‘ 7(9)

Bb e, @, C o oa cg | ; | (10)

Fa = Bla + BZa ¢y | (11)
|

Fio o= By + Byy € | (12)

: l
11.2, 2,2 By setting Ba + Bb = 0 and F, + Fp, = 0, the above equations may be reduced to

a second degree equation'in ¢y . There are then two real solutions called the left and right hand solutions.
Examples of the two solutions are shown in Figure 11.1. The doublet used in the example was computed

for the following glasses: ; v

Lens f(a) n 1.511 v = 63.5

(o) n, = 1.649 v = 30.6
11.2.2.3 The doublets shown in Figure 11. 1 have the low dispersion glass in the front element facing the
infinite conjugate side of the lens. Doublet solutions can equally well be found with the high dispersion glass
in the front. Figure 11,2 shows the left hand solution for the same glasses with the positions reversed.
The left hand solutions with the positive lens in front have the most fayorable shape for the passage of the
axial rays. Therefore most telescope objectives are solutions of this:type, and they are referred to as
Fraunhofer objectives. 5

i
i
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Left hand solution Right hand solution

Figure 11,1 - Two types of doublets. For both types, the positive lens is in front and is of low
dispersion glass, 3

Figure 11. 2 - Doublet with negative lens in front.
The glasses are the same as the left
hand solution in Figure 11,1 with the
positions reversed. )
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11. 2.3 Thin lens solutions,

11.2.8.1 Table 11.3 contains a selection of left hand solutions for 38 thin lens systems of the Fraunhofer
type. Table 11.4 includes a list of the left hand solution for lenses with the negative lens in front. Systems
with the negative lens in front appear to offer no advantages over the Fraunhofer type and so will not be
discussed further. i
11.2.3.2 There are of course numerous other combinations of glass one can pick, but those shown in
Table 11. 3 provide a sufficient variety of choices to build up an understandmg of the solutions. The
following points should be noted about the solutions: ‘
(1) The series of solutions 1 to 8 have the same glass for the positive lens. The

negative lenses however are all selected from the ordinary glass line shown

in Figure 6.18. Notice that the first curvature for each solution is approxi-

mately 0. 165 and the last curvature is about -0, 08. The outside appearance

of these lenses is therefore very similar. The d;fference between the lenses

is in the curvatures of the internal surfaces. [

(2) When combinations of glasses with small v differences are selected, the
curvature of the second surface is stronger than that of the third surface.
This means that the surfaces do not edge contact and a spacer is needed. As
the v difference is increased, the difference in curvature of these two
surfaces decreases, and at large v differences the third surface becomes
stronger than the second. The lenses then contact at the edge.
!

11.3 DESIGN PROCEDURE FOR A THICK LENS TELESCOPE OBJE;CTIVE

11. 3.1 The thick lens doublet.

‘ .
11.3.1.1 Very little chowe can be made, from the thin lens data alone, between the numerous telescope
objectives. In order to make a selectlon from the possible glass chomes it is necessary to trace rays
through the designs. ;

11.3.1.2 As was pointed out in Section 10.4.1.7, When a lens is studled by ray tracing it is necessary to .

decide on a definite £ - number, Changing the f - number requirement changes completely the conclusions
one draws from the ray tracing. In order to illustrate the design procedure, a study w111 be made for a
particular lens of § - number 3. 57 with a focal length of 10, _ .

11. 3. 2 Automatic correction of the third order aberrations.

| . . i
11.3. 2.1 After thicknesses are added to the thin lens solutions, it xé necessary to read;ust the curvatures
to correct the spherical aberration, coma, and axial color to the required residuals. One cannot set the
third order aberrations'to zero if the total aberrations are to be zero, for the actual ray tracing will reveal
the presence of higher order aberration. i

| :
11.3.2.2 In order to compare various glass choices in doublets it is necessary to hold constant many
variables. In the study to be described the following parameters were held constant.

(a) The focal length of each lens was 10.0,

(b) The marginal ray entered the lens at Y1 = 1.4
|
(c) The third order spherical aberration was adjusted until the marginal ray at
Y1 = 1.4 1in D light focused at the paraxial D focus.

(d) The axial first order color was adjusted until the xays traced at a value of
Y1 = 1.0 for ¥ and C light united in the paraxial focal plane.
(¢) 'The thickness of the positive and negative element was made 0.5 and 0.3, respectwely

() 'The space between the lenses was maintained automatically. There were
two alternatives. Where r_ > r, , the elements were spaced by .0.01
at the aperture height of y 2 1.4; where r, <r, , aspaceof 0.01was"
set at the vertex.

(¢) The third order coma was corrected to zero in alli cases.’

i

i
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I Gl%i:gg},‘ées Individual surface .
npg Npy Total curvatures curvatures Case
va 2 vh__ B Ca cp c1 C2 C3 C4 No.
I 1.511 1.5795 0.5523 ~0.3145 0.1652 ~0.3871 ~0.3802 --0,0658 1
Oﬁn 4%:(6)21 0.4552 —0.2135 0.1658 —0.2893 —0.2848 —0.0713 2
a1t 3%49 0.4184 —0.1754 0.1660 —0.2525 —0.2499 —0.0746 3
l S 3?:%89 0.3812 —~0.1376 0.1659 ~02152 —0.2163 ~0.0787 4
ﬁiﬁgu 3(1)2(7)20 0.3634 —0.1190 0.1659 —0.1975 —0.2009 —0.0819 5
l i #3052 03270 | -0.0833 01656 | —0.1614 | —0.1730 | —0089 6
G | Boroe | osom | —osurs 01563 | —06507 | —0.6351 | —00875 1
Sn *) sass 07101 | —0.508 01595 | —05506 | —0.534 | —00851 8
l S A 0s 0.6245 —0.3622 0.1620 —~0.4625 —0.4476 —0.0854 g
:i.’gn 3:?:517 0.4798 —0.2353 0.1657 —0.3141 —0.3077 --0.0723 10
1.511 1.717 0.8123 —0.4394 0.1411 ~0.6711 —0.6259 —0.1865 1
I 6?:311 720 0.9415 —0.5293 0.1228 —0.8186 —0.7630 ~0.2337 12 .
S %0 Noa7 0.5727 —0.2397 0.1631 —~0.4005 —0.3779 —-0.1382 13
I o * a0 0.3713 —0.1335 0.1648 —~0.2065 —0.2001 —~0.0756 14
“toun N Sr0s 0.5516 —0.4090 0.1594 —0.3922 —0.4009 0.0080.. 15
a1 ﬂﬁgn 0.4397 —0.2734 0.1538 —0.2859 —0.2903 —0.0170 16
l fx;%n zgggzl 04318 —0.2638 0.1535 —0.2782 —0.2824 —0.0186 | 17
sfig“ 33:(549 0.3895 —0.2126 0.1525 —0.2369 —0.2403 —0.0277 18
. Jont JLaso 0.3482 —0.1637 0.1519 —0.1963 —0.2002 ~0.0366 to
Jont 12 0.3290 ~0.1403 0.1518 ~0.1773 | —0.1819 ~0.0416 "20
e e 0.3448 ~0.1607 0.1519 ~0.1930 ~0.1973 —0.0366 21
l o520 e 0.3910 —0.2308 0.1521 ~0.2389 —0.2459 —0.0151 2
o520 Lo 0.3526 —0.1827 0.1510 —0.2016 —0.2080 —0.0253 23
l (i L7506 0.2904 —0.1067 0.1500 ~0.1404 —0.1503 -050437 24
| (L0 L8052 0.2731 —0.0861 0.1498 ~0.1232 —0.1362 ~0.0502 25
(Yoo 8087 0.4902 —0.2531 0.1490 —0.3412 —0.3253 ~0.0716 2
l 5;:238 3&17 0.4603 —0.3139 0.1527 —0.3075 —0.3144 —0.0005 27
5§Z§38 4 2249 0.4009 ~0.2400 0.1503 —0.2506 —0.2551 —0.0151 28
1.638 1.689 0.3536 —0.1823 0.1493 —0.2044 —0.2083 —0.0260 29
l :g{ésa 23.'220 0.3308 —0.1542 0.1490 ~0.1818 ~0.1861 —0.0319 30
5{1455286 4§:gw7 1.6831 —1.437 0.1206 ~1.563 —1.548. —0.1113 31
l 5}:.2286 4{:(5)795 0.9209 —0.6675 0.1481 —0.7729 —0.7568 —0.0893 32
(L5286 3é:2” 0.6339 —0.3785 0.1584 —04755 —~0.4604 —0.0819 33
S}:gm o 0.5484 —0.2926 0.1610° | —0.3874 —0.3736 —0.0810 3
l 5}j2286 3(1):889 _ 0.4716 ~0.2167 0.1629 ~0.3087 —0.2975 —0.0808 35
S%..65286 2;:32 0.4378 ~0.1825 0.1635 —0.2742 —0.2646 ~0.0822 36
'S{:gzsc AT 04981 —0.2268 0.1623 —0.3357 —0.3193 ~0.0926 37
l 5}35286 2;%6 0.4378 —~0.1729 0.1639 —0.2738 _ _-—0.2620 | 008913 38
Table 11.3. - Thin lens aplanatic doublets of focal length 10.
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Glass values ; l
Element Individual surfaces
n'ga ngb Total curvatures curvatures - |case ‘
Va Vb Ca Ch C1 c2 c3 c4 No.
41'5795 1.511 -0.3145 0.5523 0.2270 0.5415 0.5473 | -0,0050 1
1. 63.5 . .
1.621 1.511 -0.2135 0. 4552 0.2332 0.4467 0.4496 | -0.0056 2
36.2 63.5 _ : '
1.649 1.511 -0.1754 0.4184 0.2369 0.4123 0.4127 | -0.0057 3
|33.8 63.5 .
| 1.e89 1.511 -0.1376 0.3812 0.2417 0.3793 0.3755 | -0.0057 4
30.9 63.5 \
1.720 1.511 -0.1190 0.3634 0.2453 0.3643 0.3577 | -0.0057 5 )
29.3 63.5 j ‘
1.8052 1.511 -0.0833 0. 3270 0.2543 0.3376 0.3217 | -0.0053 6 l
25.5 63.5 ;
1. 5704 1.511 -0.5476 0. 8070 0.2487 0.7962 0.8109 | 0.0039 7
. 63.5 :
1.5838 1.511 -0.4503 0.7101 0.2465 0.6968 0.7108 | 0.0007 8
46.0 63.5 '
1.605 1.511 ~0.3622 0.6245 0.2471 0.6092 0.6227 | -0.0018 9
43.6 €3.5 i :
1.617 1.511 -0.2353 0.4798 0.2342 0. 4595 0.4744 | -0.0055 | 10
36.6 63.5 ‘
1.717 1.511 -0.4394 0.8123 0. 3500 0.7895 0.8315 | 0.0193 | 11
48.2 63.5 : ’
1.720 1.511 -0.5293 0.9415 0.3974 0.9267 0.9791 | 0.0376 | 12
50.3 63.5 : ’
1. 8037 1.511 -0.2397 0.5727 0.3029 0.5426 0.5699 | -0.0027 13 .
41.8 63.5 ‘
1.639 1.517 -0.1335 0.3713 0.2385 0.3718 0.3666 -0.0045 14 l
30.9 64.5 .
1.5795 1.611 -0. 4090 0.5516 0.1532 0.5622 0.5540 | 0.0023 | 15
41.0 58.8 ‘
1.617 1.611 -0.2734 0.4397 0.1788 0.4521 0.4476 | 0.0079 | 16 .
36.6 58.8 :
1.621 1.611 -0.2638 0.4318 0.1805 0.4443 0.4399 { o.c082 | 17
36.2 58.8 i .
1.649 1.611 -0.2126 0.3895 0.1900 0. 4026 0.3986 | 0.0092 | 18
33.8 58.8 . .
1.689 1.611 -0.1637 0.3482 0.1994 0.3631 0.3580 | 0.0008 | 19
30.9 58.8
1.720 1.611 -0.1403 0. 3290 0.2049 | 0.3452 0.3390 { 0.0100 | 20
29.3 58.8 )
1.689 1.611 . | -0.1607 0.3448 0.1995 0.3602 0.3548 | 0.0088 | 21
30.9 58.8 ‘
1. %17 1.620 -0.2308 0.3910 0.1769 0.4077 | 0.4007 | 0.0097 | 22 l
36. 60.3
1.649 6 (1). %20 -0.1827 0.3526 0.1876 0.3703 0.3634 | 0.0108 | 23
33.8 - 60, ; .
1.7506 1.620 -0. 1067 0.2904 0.2074 | 0.3141 0.3023 { 0.0118 | 24 l
27.8 60.3 : .
1.8502 1.620 -0.0861 0.2731 0.2147 0.3007 0.2851 | o0.0121 | 25
25.5 60.3 ! . !
1.8037 1.620 -0.2537 0. 4902 0.2361 0.4898 0.5031 { ©0.0130 | 26
41.8 60.3. : :
1.617 1.638 -0.3139 0. 4603 0.1623 0.4762 0.4696 | 0.0094 | 27 I
36.6 55.5
1.649 1.638 -0.2400 0.4009 | 0.1774 0.4174 0.4127 | o0.0118 | 28
33.8 55.5
1.689 1.838 -0.1823 0.3536 0.1889 0.3712 0.3665 | 0.0128 | 29
30.9 55.5 :
1.720 1.638 | -0.1542 0.3308 0.1951 0.3494 0.3439 | 0.013t | 30
29,3 55.5 ;
1.5497 1.5286 | -1,437 1.6831 0.2721 1,7087 1.7231 0.0399 | 31
45.8 51.6
1.5795 1.5286 | -0.6675 0.9209 ©.2505 2.9160 0.9333 | 0.0124 | 32 l
41.0 51.6 ‘
1.621 1.5286 | -0.3785 0.6339 0.2438 0.6223 0.6360 [ 0.0021 | 33
36.2 51.6 .
1.649 1.5286 | -0.2026 0.5484 0.2433 0.5359 0.54795| -0.00047| 34
33.8 51.6 . v
1.68% 1.5286 { -0.2167 9.4716 0.2438 0.4604 0.4692 | -0.0024 | 35
30.9 51.6 , .
1.72 1.5286 | -0.1825 0.4378 0.2456 0.4281 0.4347 | -0.0030 | 36
29.3 51.6 |
1.72 1.5286 | -0.2268 0.4981 0.2560 0.4827 0.4962 | -0.0018 | 37 l
42,0 51.6 ‘ .
1.76 1.5286 | -0.1729 0.4378 0.2531 0.4260 0.4344 | -0,0034 | 38
29.3 816 : '
- - — 1
Table 11.4 - Telescope objectives with flint in front.
' E
l
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11.3.2.3 In designing a doublet of a particular glass choice, it is necessary to estimate the values at which
to set the third order spherical aberration, B, and axial color, a. Then surfaces 1, 2, and 3 are varied
to provide derivatives for B, F, and a. The following three equations are then solved for the required
values of B, F, and a. '

ITB ITB 0ZB

AZB = Aey 4+ Acy, + ———— .Ac3 ’
aci (:2 ] ac3
. aZF IZF aTZB
AZP = __5(':— Acl -+ 3c ACZ x AC3 s
1 2. 3
_ . _9za za 9Za
AZa = —-a-c—l—-—- Acl —agz—- ACz + _—EE;— AC3 .

This is the method described in Section 9.2.4.12. Since the changes are not linear, it is necessary to
repeat the procedure for several iterations. When the desired third order values are found, the so__lu’;ioh is
then ray traced in D, ¥, and C light at 0° withvaluesof Y, = 1.4, 1.2, 1.0, and 0.8. From
this ray tracing data it is possible to determine if condition ¢ and d are fulfilled. If they are not it is.
necessary to assign a new valueto B and a and repeat the process.

11.3.2.4 Tables 11.5, 11.6, and 11.7 show the data for three doublets designed in this manner. The °
design shown in Table 11.7 illusirates a careful balance of high order aberrations for D light. In order
to arrive at this design it was necessary to choose just the right » number for the negative lens. U a
flint with a larger » number had been chosen, the rays at an aperture of Y; = 1.4 would have crossed
the paraxial focal plane at a larger negative value and this would have been impossible to correct without
introducing a large positive. zonal aberration. Notice how the F light starts out to be under-corrected
(negative Y, ), butas Y, is increased it becomes over-corrected (positive Y, ). The C light
starts out positive and then turns toward the negative side. This is evidence of chromatic variation of -
spherical aberration. Note also how the aberration for the lenses in Tables 11.5 and 11. 6 are larger than
in Table 11.7 even though all the curvatures are smaller. If a different § - number is needed one would
choose a different flint element for optimum correction.

11.3.2.5 The aberration curves in Figure 11. 3 are for the ray data given in Table 11.6, The D “light
curve is typical for a telescope objective. The third order spherical aberration is undercorrected. The
curve, for small values of Y1 , starts out below the reference axis following the third order aberra-
tion, but it then starts to depart and swings towards the positive side. This is due to higher order aberra-
tions which, in this case, are positive. By evaluating the constants in Equation 8-(1) for this aberration
curve we find that

b = 0 b = -0.0014, and b_ = 0.000619
[o] 3 5
Lens specifications
c t - n . v
| . 0.1672 '
| 0.5 1.511 63.5 f'=9.995478
| -0. 1594
0.0218 1.0 1'=9. 624807
-0.1709
0.3 1. 80489 25.4
-0.0886
Ray-trace data
Y Yp Yy Ye
1.4 0.000279 | 0.002047 | 0.000618 | Yis the height
1.2 -0.000689 | 0.000362 | -0.000233 | of the ray in
1.0 -0. 000777 | ~0.000202 { -0.000291 | the D light
0.8 -0.000542 | -0, 000267 | ~0. 000089 | paraxial focal
plane.
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TELESCOPE OBJECTIVES

Lens specifications
c t n v
1
0. 167876 :
0.5 1.511 63.5 f'=10. 000000
-0. 244936
0.01 1.0 1= 9.597161
-0. 243789
0.3 1.649 33.8 |
-0.073862 ’
Ray-trace data
Y1 YD YF Yo
1.4 0.000201 | 0.002359 | 0.000334
1.2 -0.000423 | 0.000786 |-0.000079
1.0 -0.000526 | 0.000060 |-0.000089
0.8 -0.000387 {-0.000176 | 0.000055

Table 11.6 - Lens specification and ray tra

l

ce data for an

achromatic doublet with moderate v difference.

i
i
|
t
i
r
|
|

i
|

Lens specifications
e t n v
0.168413 |
‘ 0.5 1.511 63.5 f*=10. 0000
-0. 290972
0.01 1.0 1'= 9.578138
-0. 289068
0.3 1. 605 38.0
-0.067287
Ray-trace data :
Y ¥p Yg Yo
1.4 -0.000366 | 0.001065 | 0.000038
1.2 +0.000083 [ 0.000618 | 0.000673
1.0 -0.000034 | -0.000064 | 0.000628
0.8 -0.000092 | -0. 000411 | 0.000542

Table 11.7 - Lens specification and ray/
achromatic doublet with small v difference.

11-10
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Figure 11.3 -~ Meridional ray plot at 0° for a doublet lens..

11.3.2.6 The third order calculations for this lens are included in Table 11.8. Inspection of these data gives
a clue to why is positive. Surfaces 1, 2and 4 have negative values of B. The only source of posi-’
tive B is the 35rd surface. A surface always adds higher order aberration of the same sign as the third -
order. Since the 3rd surface introduces such a large positive third order contribution it over-balances the
negative higher order contributions from the other surfaces. The result is a positive fifth order term. In
designing the doublet it is considered advisable to adjust the third order aberration so that the higher order
correction brings the curve backto Y, = 0 for theraysat Y, Y1 max. This leaves a residual
aberration called zonal aberration. In figure 11, 3 the zonal aberrat;on for D light amounts to -0.000526.

0.16788 | -0.24494 | -0.24379 | -0.07386

c

t 0.50 0.01 0.30

n 1.511 L0 1.849

y 1 0.97161 | 0.96954 | 0.95972

u -0.05677 -0.20739 -0.03274  -0.1

B |-0.00106 | -0.03273 | 0.03580. -0.00225 | B = -0.00023
oY = -0.00115

Table 11, 8 - Third order spherical contribution on.each
" surface of the doublet shown in Table 11,6
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11. 3.3 Tolerance on zonal aberratlon.

11. 3. 3.1 The question of the tolerance on the zonal aberration cannot be explained fully here, but a few :
guide lines can be given.
l

(1) If the axial image must be corrected to be physically perfect it is ‘
necessary to reduce the zonal aberration to the following tolerance.

{
|

4.6 2 - . . " ‘
(Y, ) = et L = optical direction cosine of the
k ‘zone L1 k-1 emerging ray.
This tolerance assumes that the ray traced at a height of Y1 max. " is
adjusted so that Y, = 0. Tolerance is calculated as a posmve number.

(2) If the objective is used in a telescope, one can !compute the angular
aberration presented to the eye, and set the tolerance by using the principle
that the angular resolution of the eye is hmlted to one part in 3000. How-
ever, there is no need to attempt to reduce the zonal aberration below the
value given above for the diffraction image case (1). In this region the
size of the image is actually determined by the!physical nature of the light
and not by the geometrical aberrations. i '

11.3.3.2 The Y, for the lens shown in Table 11. 6 is 1. i The focal length is 10. Therefore,
Lk__1 is appromm tely -0.14 The zonal tolerance ( Y, )zone is then calculated as follows. :
«. ) _ 4.6 x 0.5893 microns '
k ‘zone ~ 0.14 ’
= 19,4 microns = 0.0194 mm:. ‘

The zonal aberration for the lens in Table 11.6 is -0.000526. This means that the lens could havea
focal length 10 x  0.0194/0,000526 = 369mm and remain corrected within the tolerance. This

assumes, of course, that the light is monochromatic. One can see that P and C  light are not ’

corrected as well as this. More will be said about this in a later sectlon (Section 11. 4) on secondary

spectrum. ,
. |
11.3.4 Methods for reducing the zonal aberration. :

| ] o .,
11.3.4.1 If the zonal aberration is too large in a lens it may be reduced by four meth ds. These methods
will now be described for they illustrate a powerful technique of design. The methods.are: =

(1) Choosing the proper glasses.

(2) Using an air spaee.

(3) Introducing an aspheric surface.

(4) Adding an extra positive lens,
11.3.4.2 Tables 11.5, 11.6, and 11.7 illustrate the influence of glass choice,

11. 3. 4.3 If the air space is made larger the marginal rays have a chance to drop more before they strike

the negative lens. The higher order negative aberration on the positive lens then causes the rays. to actually

strike the over-correcting surface at a lower aperture than predicted from first and third order theory.
This cuts down on the higher order over-correcting tendency of this surface. Therefore as the space is
inereased the positive fifth order term is reduced. The third order value can then be made less negative,
resulting in a reduced zone. Figures 11.4, 11.5, and 11, 6 show some of the aberration curves for doublets
where the air space has been ad;usted to mimmlze the spherical aberrationin D light. These lenses
were also corrected so that the was 1. 4. The zonal aberration has been reduced to a remark-
able degree. Table 11.9 contains tﬁe curvatures and thicknesses for many optimum solutions of this type.
The last two columns are headed OSC', which stands for offense. > ngainst the sine condition. This quan-~
tity, OSC', is proportional to coma, for a given image height, Yk . These last two columns, there-
fore, are a measure of third order coma, and total coma for the margmal ray, respectively

1
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Figure 11.4- Effects of v
difference on spherochro-
matism (glass A used in

positive lens, glass B used

in negative lens).

Figure 11.5- Effects of index
of positive (A) lens on sphero-
chromatism.

Figure 11. 6- Effects of index .
of negative lens (B) on sphero-
chromatism.

Glasses . OscC
X £ Third
+lens | -lens j Aw C1 €2 C3 Cq . ta order |Marginal
517645 | 751278 36.7 +0.2582 —0.1450 —0.2222 ~0.0489 10.7364 ~0.0030 { —0.0017
517645 | 720293 35.2 +0.2379 —0.1630 --0.2159 —0.0470 +0.5353 —-0.0026 | —0.00i4
517645 | 689 309 33.6 +0.2205 —0.1825 —0.2173 —0.0468 4-0.3596 —0.0022 | —0.0012
517645 | 649338 30.7 +0.1955 —0.2215 —0.2348 —0.0516 +0.1412 —0.0015 | —0.0009
517645 | 617 366 27.9 +0.1780 —0.2638 ~0.2663 —0.0575 +-0.0400 —0.0007 | —0.0006
517 645 | 657 366 27.9 +0.1634 —0.2716 —0.2671 —0.0783 +0.0022 +0.0003 | —0.0000
517645 | 720362 28.3 +0.1526 —0.2733 —-02632 | —0.0986 —0.0261 +0 0010 | +0.0004
523586 | 751278 30.8 +0.2001 —0.1801 —0.2067 —0.0593 +0.3141 —0.0016 | —0.0009
523586 | 720293 293 -+4-0.1955 —0.2016 —0.2161 —0.0612 40.1826 —0.0013 | —0.0008
523 586 | 689 309 27.7 -+-0.1829 —0.2260 —0.2317 ~0.0641 +0.0883 —0.0008 | —0.0006.
523 586 | 649 338 24.8 +0.1611 —0.2776 —0.2730 —0.0751 —0.0014 +0.0004 0.0000
523586 | 617 366 220 +0.1373 ~0.3417 —0.3334 —0.0926 —0.0221 +0.0028 | +0.0015
523586 | 657 366 22.0 +0.1149 —0.3787 —0.3653 —0.1282 —0.0311 40.0048 | +0.0026
523 586 | 720 362 224 +-0.1009 —0.3636 —0.3478 —-0.1523 —0.0444 +0.0064 | $+0.0039
611588 | 751278 31.0 +0.2149 —0.1381 —0.1858 —-0.0111 +0.4904 —0.0020 | —0.0011
611588 | 720293 29.5 +0.2052 —0.1551 —0.1913 —0.0086 4-0.3540 —0.0019 | —0.0011
611588 | 689309 279 +0.2006 —0.1731 —0.2027 —0.0030 +4-0.2606 —0.0020 | —0.0011
611 588 | 649 338 250 +0.1971 —0.2091 —0.2308 +0.0079 +0.1481 —0.0025 | —0.0015
611 588 | 617 366 22.2 +0.2161 —0.2426 —0.2662 +0.0389 +0.1128 —0.0050 | —0.0032
611588 | 657 366 22,2 +0.1713 —0.2598 —0;2652 —0.0142 +0.0347 —0.0013 | —0.0009
611588 | 720352 22.6 +0.1439 —0.2676 —0.2623 —00538 . | —0.0128 4-0.0008 | -+0.0003

Table 11. 9.~ Final solution lens data resulting from least-—squares correction program. For all lenses,

f= 10.0 cm,

ty = 0.5 cm, t3

= 0.3 cm.
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11.3.4.4 Probably the simplest (from a theoretical point of view) method to reduce the zonal aberration

is to introduce an aspheric surface on the last surface. Thus one can introduce high order terms of deform-
ation and geometrically correct any amount of zonal aberration in the lens. The method used to compute

the necessary coefficients is usually quite straight forward; briefly, it is as follows:

(1) Add a fourth order deformation term to reduce Fthe third order aberration to

zero. See Equation 8-(4a).
|

(2) Make an arbitrary guess at a sixth order coeffijcient (f). See Section 5. 5. 2.

1
(3) Trace through a ray at a finite aperture and determine how much of a de-

flection AYk this aspheric term causes.

\
(4) It may then be assumed that this deflection

|
AYk = foSs + 8gS7 + 10hs® + vences :l .

(5) It is then possible to write a set of equations to‘ bring as many rays to the
axis as there are aspheric constants. It is possible to write as many
equations as rays traced through the system, but if there are more equa-
tions than terms in the aspheric, one has to resort to a method of least

" squares rather than expect an exact solution, '

(6) Since the equation in step 4 is not exact, it may be necessary to repeat the
process a few times. ‘

This method is usually satisfactory, but if either the aperture of the lens or the zonal aberration is large, it

may not be possible to fit 2 power series deformation which will reduce the aberration for all rays. Thisis .

because not enough terms are used in the expansion. In practice if one cannot fita curve with a 10th degree
polynomial then it helps very litile to add a few more terms in the series; it takes a large number of terms
to reduce the aberration for many rays. Sometimes it becomes necessary to abandon the use of the poly-
nomial expression. The aspheric must then be expressed as a series of Y and Z coordinates. This is -
computed by actually calculating the optical path along the ray, and adding glass thickness to produce a
spherical wavefront. This procedure is almost never necessary, but if it is, then one seriously questions
whether it would be pogsible to make an aspheric of this type. [ .

i

ab ¢

Solution No 1 ‘ : Solution No 2

Figure 11.7 - Two types of triplfet solution.
|
|
i
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11.3.4,5 The zonal spherical aberration can be reduced by splitting off some of the power in the positive
lens in the doublet. This would make a triplet similar to the types illustrated in Figure 11.7. By so doing,
two extra degrees of freedom are created, namely the power - ¢ of the exira positive lens, and its first
curvature, c; . One degree of freedom will be eliminated by cementing the last two elements. The
problem then becomes, whatis ¢, ? In other words, how should ¢, and ¢, be distributed? The
manner one uses to find an answerato this problem is typical of one of the techniques used by a lens designer.
The reasoning goes as follows: ,

(1)  If the lens is assumed to be thin, the power ¢, + ¢, will equal the
same power as for the positive lens in a doublet. Therefore one may
start by using the powers for the lenses as given in Table 11. 3.

(2) By cementingthe b and c lenses, there are only two degrees of
freedom left. The first curvatures, c¢; and , are the varia-
bles. ¥ ¢ is decided upon, then the thin lens formulae, described
in Section 8.%, enable one to compute the coefficients of the equations

B, = a;, + @, € + a3, cf ’
B = a + a c + a c2 |
b+c 1(b+c) 2(+c) 3 3(b+c) 3
F, = Bia * Bya €
F, = Ay + By C3 -

In exactly the same way as for the doublet, two types of solutions may be found. They are illustrated in
Figure 11.7. .

(3) Nextplot B, for these two solutions on a plot as shown in Figure 11.8. B,
is the total spherical aberration due to the negative lens. By finding the two
solutions for several values of ¢a it is possible to plot the curves shown in
Figure 11.8. These curves show thatif ¢, = 0 we then have a simple
doublet and the two solutions require different amounts of positive spherical
aberration. For the doublet, of course, the (b) and (c) lenses mustbe
considered to be separated. As more and more power is put into lens (a), less
and less positive B is required of lens (c). Now we know that the higher
order aberrations will be minimized when the lens is corrected with B, having -
a minimum positive value becausé the higher order spherical aberration has the
same sign as the third order. From this reasoning one would predict that the
type 1 solution with a value of ¢, = 0.066 would provide an optimum solu-
tion. Solution 1, shown in Figure 11.7, is a lens of this type. The type 2 lens
was also chosen with a value of ¢, = 0.066.* Table 11.10 shows the results
of ray tracing these solutions after adjustments were made to the residual third
order aberration so that the marginal ray comes to focus at ¥y = 0. Tabie
11.11 contains the data for these two solutions.

(4) Itis interesting to see that the type 1 lens is remarkably well corrected. The
zonal aberration is 10 times less than the type 2. The type 2 lens may be
thought of as a derivative of a separated doublet of the left hand branch. With
the choice of glass used, the doublet would be an air spaced lens. By cementing
it, it would be under-corrected for spherical aberration. Now by splitting off a
small part of the positive lens and by bending slightly the lens can be re-cor-
rected for spherical aberration, thus leading to the lens type 2. The type 1 lens
is actually a derivative from the right hand branch of the doublet. Note that the
better solution comes from the poorer doublet type. This is mentioned because,
in designing this type lens, if one started by trying to modify a left hand-doublet
lens he might easily converge on a type 2 solution and find no advantage in using
the split positive lens. Notice that the zonal aberration in the type 2 lens is

“# It is true that the type 2 solution would probably be better at ¢, =0.082 or at ¢a = 0,138, but the value of
¢a = 0,066 was selected to illustrate that for a given value of _éa there are two solutions quite close together.
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Figure 11.8 - A plot of Bc the total spherical aberration of the negative lens as a function of ¢, . -
. ! | .

TYPE 1 TYPE 2
Yy Yy Yy
1.4 0. 000210 -0. 000101
1.2 0. 000070 -0. 000706
1.0 0.000010 -0. 000696
0.8 -0. 000007 ~-0.0004681
Table 11.10 - Ray trace data in D light showing
a comparison between type 1 and
type 2 solutions in triplet telescope
objectives |
Type 1 Type 2
c t ng, v e t
0.07121 0.1641
0 1.511 63.5 0
-0.05525 .0.0349 .
0 : 0
0.20132 0.0472
0 1.511 63.5 : 0
-0.03572 £0.1871
. 0 1.72 29.3 0
0.08337 -0.0680
f '—i 10

Table 11.11 - Lens data on type 1 and type 2 lenses
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almost identical with the doublets shown in Table 11.6. If we had happened to
choose a glass combination which would have resulted in a cemented doublet,
then a type 2 solution would offer no advantage, One would have to go to type
1. The curves shown in Figure 11,8 change as the glass is varied. In Figure
11.9 the type 1 branch is shown for another pair of glasses. One can see that
it is quite different, for most of the positive power should be placed in the (a)
lens. '

. 042
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.034
.032
.030
.028
.026
o . 024
A .022
.020
.018
.016
.014
.012
. 010
.008
. 006
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¢
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Triplet f

a) nD = 1.511
b) n D = 1. 511
c) ny = 1,579
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.02 .04 .08 .08 .10 .12 .14 .16 .1
$a

Figure 11.9- A plot of B, as a function of ¢, for a triplet.
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11. 3.5 Discussion of zonal correction methods.

11.3.5.1 This study illustrates that there are many possible solutions, and the designer must investigate
them all in order to be sure he has exhausted the possibilities. This study also illustrates that there are
regions where no solutions exist even though there appear to be a sufficient number of degrees of freedom.

11.8.5.2 If possible, a doublet design should be used. However if the zonal spherical aberration exceeds

the tolerance, there are the four methods for reducing the zonal aberration described in the above section.
Of these methods the fourth method of adding the exira element is strongly recommended, for this method
does not involve the balance of large aberrations. The other three methods depend upon the balancing oi
large aberrations. The extra element method provides a solution with no large surface contributions. One
will find in practice that it also will provide a lens much easier to manufacture, for it will be much less
sensitive to decentering or spacing errors. .

11.3.6 Coma correction. So far practically nothing has been said about coma correction. All the doublet
solutions were corrected to have the third order coma exactly zero. This provides optimum correction for
most of the designs. However, if the zonal spherical aberration is corrected by a large air space, one will
encounter. high order coma aberration, and it may be necessary to introduce residual coma in the third
order. This however is very unsatisfactory, so everything possible should be done to find a solution with
minimized high order coma. For this reason also, the split doublet lens offers a far better way to reduce
the zonal aberrations than does the unsplit doublet, as the former has excellent coma correction.
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11.4 SECONDARY SPECTRUM OF TELESCOPE OBJECTIVES

11,4.1 The difference in focus for ¥, C, and D light.

11.4.1.1 In the preceding paragraphs, it was shown (11. 3. 4. 3) how the zonal spherical aberration could

be reduced by a large factor. However, the aberration curves of Figures 11.4 through 11,6 clearly show
that since the lens must be designed to image F and C light, asiwell as D light, the high degree of zonal
correction in D light is of small practical significance. The F and C light focus does not coincide with
the D focus. This defect in focus for F, C, and D lightisa parax1a1 ray defect and was briefly dis- -
cussed in Section 6. 10.8, where the transverse aberration, TAchF‘D , was defined as the secondary

spectrum,
are;
(1) Use special materials with equai partial dispersions.
(2) Use more than two types of glass.
(3) Use proper combination of lenses.

Paragraphs 11.4.2 and 11.4.3 will describe methods (1) and (2) respectively.
!

11. 4.2 Reduction of secondary spectrum in a doublet. (i’a - i’b‘ = 0 Method).

11.4.2.1 Equation 6-(49) tells us that when the partial dispersion! ratios of both lenses of a doublet are
equal for F and D light, then P, - P, = 0 andthe F, C, and D -light will unite in a common’
focus. Now, depending on the shapes of the dispersion curves of the glasses used in the doublet, there is
still the question of where other wavelengths will focus.

11.4. 2.2 Equation 6-(49) can also be used to calculate the TAch)\ _p for any other wavelength. If the pa.rhal

dispersion ratios for other wavelengths are not equal, i.e., P, Pb # 0, then there is'still residual
chromatic aberration. In choosing glass types, then, a designer must consider the following compromises:

l
(1)  Should he settle for a small (¥ , - V) by settmg (P - P ) exactly
equal {o zero, or should a larger (¥ , - V) be chosen and some secondary
color be allowed? The decision, of course, will depend on the focal length and
the numerical aperture required of the objective.

(2) Dges the need for correction for a large range of wapelengths require that
(Pa - Pp ) be set at a value other than zero?
11,4, 2.3 It is clear that these considerations, combined with the task of correcting the spherical aberra-
tion, and the variation of spherical aberratlon with wavelength, pose a formidable array of problems.

11.4.2.4 The designer’s difficulties are further increased by the ueed for extremely accurate measure-
ments of the index of refraction. One can, by differentiating Equation 6-(49), determine that the following
relation holds for an achromatic doublet. ' '

|
I
'

d (TAch, n., -1
dny = ,& 2) (——D———-—) | (13)
Ch)\ D 2200

!

Therefore, if it is desired that the secondary spectrum of a doublet be held to 1/10 oj its normal value,
then it should be sufficient to know the index of refraction at each Wavelength with an aceuracy of 2 in the
fifth decimatl place. With an index error of this magnitude in each of the wavelengths used to calculate P
and Vv it is possible for the errors to combine so as to cause a doubling of the total error. Thus it 1s

’
necessary that the index be accurate to at least half of this value, or 1.0 in the fifth dec1ma1 place.

l
11.4.2.5 It is not only difficult to make measurements of the index of refraction with thls accuracy, it is
even more difficult to manufacture glass to specification with this élegree of precision. The reputable opti-
.cal glass manufacturers claim the required accuracy of their measurements but do-not claim to be able.to
furnish samples to catalog values with this exactness. If, in the manufacture of precision lenses, it is
necessary to have glass whose index of refraction is accurate to this degree, then it is necessary to have
measurements of index made on a sample of the actual glass to be used in the lens.

11-18
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11.4.3 Correction of secondary spectrum in a triplet lens., (Multiple glass-type method).

11.4.3.1 By using three glass types in the telescope objective it is possible in principle to bring at least
three wavelengths to a common focus, If it is assumed the lenses are all thin and closely spaced then it is
possible to write the following equations.

o, + 9 + b, =9 (Focal length) (14)

¢a_ ¢b ¢c
- + P + = 0 (F and C light brought - (15)

a b c to same axial focus )

¢ P* ¢, B ¢ P*

i l,’, + —5—= = 0 (D light brought to the (16)

a b c - F-C axial focus)
- n, - n n
11.4. 3.2 By defining P* = m— the third equation must be fulfilled if D light is to be

i nF - nc
focused at the F and C focus, The above equations may be solved to give the following values of ¢a ,
¢, , and o, . - . ’
’ ° Va [Pz - Pﬁ ]
¢ = ¢ - ’ (17)

v, L 5 - P ]
9, = 9 A , (18)-
s . _el® - f’;] . "
43 - ) 2 X ( )
. where .

D# v 1

a a ]
A o= B w1 . (20)

Pk v 1

[+ [

- One can recogpize that A is a determinant, the value of which is the area of a triangle connecting points

plotted with P* as the ordinate and » as the abscissa.

11. 4.3.3 PFigure 11.10 is such a plot for several glasses. From the above eguations one can see that points
for three glasses must be found so as to form a triangle of finite area on the P* versus v plot. It'is
important to pick glasses that will have the smallest possible values of , and ¢, . If three
glasses are picked, as shown in Figure 11. 10 marked as a, b, ¢, then tﬁe (b) lens becomes negative, for
(P* - P* ) is negative and A is positive. In order to minimize ¢, , theratioof (B -P% )/a
muist be made a minimum. If one draws a line from a fo b it ig clear that any glasses located on thls line
will have the same ratio of (P* - P* )/ A If P* -~ P* is made smaller, the area A of the
triangle is made smaller by the same ratxo. This can be seen to be true by remembering that ac is the
base of the triangle and a perpendicular from b +to this base line is the altitude of the triangle. Therefore,

and

R R _ _cos 6
A - h -

cos 0 is the angle between the line connecting a and c¢ and the vertical axis. Aslongas cos 6 and h

remain constant then (P* - P’é }/4& is constant. The procedure to pick glasses, then, is to try to find
a triangle with as large an h as possible. It is also logical to suggest that the two positive lenses [:the (a)
and the (c) lensesj shpuld have approximately the same power.

11-19



MIL-HDBK~t4l ; TELESCOPE OBJECTIVES

T
0. T20HHHEE
5 :.'-I:J:.
30,716
oo
el [0.712
'y H 5
je? H T
a1 < 61753
1}
* ]
1l 0,708
13442 ‘59,15,‘4.
SL526 546
135724
0. 70 HeMI523586
Ty
20 30 40! ::Orr 70; 801
0. 700 T Hrh T P A PP R PR FH

v = (nD-l) (nF-nC)

Figure 11,10~ A plot of B* vs » fof different glasses.

11.4. 3. 4 Dividing equation (1'7) and (19) provides the ratio ¢ / ¢ .

] P*-P*
s (= -)

|
|
|

Since Y,/ ¥ is greater than 1, it then followsthat (P¥ - P% ) should be less than (§§§. - f"’g ).

A glass combination selected with these considerations is shown in Figure 11.10. There are, however, other
factors one must consider in selecting the glasses for the reductlon of secondary color namely, tertiary color
as described below.

11. 4. 3. 5% By satisfying the conditions in Equations (14), (15) and '%16), the three waveiengthé F, D, and C
focus at a common axial point. One may now calculate the residual transverse aberration for any other .
wavelength A , from the equation '

P

9P\ p 9B, _ $B ' n g Wy
('—_u ) +( vD)b+ ( }:,D) = TAch ( 12‘ ) (21)
a c ’ F-A }y 5 .
L
i’)\ s will be hereafter referred to as P** . By inserting the expressions for (¢/ v ) given in Equa-
tions (17), (18), (19), and (20), Equation (21) becomes 7 ‘
Py (By - Pg) + By (By - By ) + By (Bp - Br) et s

! ‘ (22)
|

* The notation P* and P** and the ideas suggested in this section have been descnbed by Herzberger,
Optica Acta, 6, 197 (1959).

|
!
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The left hand side of the eéquations is equal to

123 B 1
P5 B* 1
P Brx 1
[ c
A

The value of the determinant in the numerator is again the area of a triangle in a coordinate system with. P¥
plotted as abscissa and P** plotted as ordinate. This tells us then, that if we wish to have small residual
aberration for other wavelengths it is necessary to pick three glasses that lie on a straight line when plotted
on the P* versus P** diagram. Plots of this type are shown in Figure 11.11. There are three sets of
wavelength data plotted on this graph. The values of P** are Pyo_ps Po_p, and P, _ p- The
glasses used in a sample calculation are shown connected by dottéd lines. These plots show that A' y g .
and e light will have residual aberration because the three glasses do not lie on a straight line. As the data
is plotted the triangles show that A’ will have a positive TAch. The e light will be slightly negative, and
g will be slightly positive. An actual curve for these three glasses is shown in Figure 11.12, It is plotted
on the same coordinates-as the data in Figure 6. 20. The corresponding curve for a doublet is shown in the
same figure. The powers of the lenses in the triplet are shown compared with a doublet in Table 11.12. The

strong curves in the triplet indicate clearly the reason why lenses corrected for secondary color must
have small relative apertures. .

0. 7208 : : :
H0. 716+ 649338 8
6173858
& S 1204206
0.712 B754148
5844
P* :
0. 708 i
i 6915484 1344
e a M6 17549
S T35748
H0. 704 i #5235
517645
RE R R HH T
: . 6105, 6207 6307 640 . 2441 2461 248 1.2451.2041. 28
H0. 700 e R R ISBAdAEEaBSRENANABASARAR HuAL D D I S D
~ Dk *¥
Pip Perp Pg'“'D

Figure 11.11 - A plot showing tertiary spectrum.
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Glass types used in doublet Glass types in triplet
Positive lens 511635 Mg r
0015 Negitive lens 649338 a) 1.517 64,5
: : b) 1.613 44,2
¢) 1.5838 46.0
. 0010
Vi T
- 0005 Triplet
0
g F © C A
- . 0005 EE 4 2EERE! B i i H : L2
4000 5000 6000 7000 7500

Wavelength - &

Figure 11.12 - Plot of y; vs A for a triplet corrected for secondarjr color.

!

vDoublet _ Tr'inle,t
¢, = 0.21380 ¢, = 0.2812
¢, =-0.1138 N =-0,4747
¢ = 0.1 ¢q = 0.2935
= 0.1

Table 11, 12- Compaﬁson between péwers ina

triplet corrected for secondary

color and an ordinary

doublet.

11. 4.4 Additional readings on secondary color. For further reaJling on secondary co@lor, refer to the .

following articles:

(a) Three color achromats, R. E. Stephens, J.

Opt. Soc. Am. 49, 398 (1959)

(b) Four-color achromats and superchromats, R. E. Stephens, J. Opt. Soc. Am. 50,

1016 (1960)

11.4.5 Sample design of a triplet corrected for secondary color. *

P
|

i |
11.4.5.1 A sample lens has been fully corrected for secondary color and ray traced. The glasses used in
the design were all Schott glasses. The thin lens solution was given by R. E. Stephens in the second of the
above papers. The thin lens glasses and powers were given as follows: .

Glass Power
F-1 0. 338
KzZFS-4 -0.721

" PKS-1 0. 483

11-22

f




TELESCOPE OBJECTIVES

MiL-HDBK-141

These powers add up to 0.1. The focal length is therefore 10. The lens was corrected for an § - number
The final lens specifications are shown in Table 11.13.

of 12.

LENS SPECIFICATIONS

c t Glass
© 0.1989 0.1683 F-1
-0. 0791 0.0175 Air
-0.1502 0. 1400 KzFS-4
0. 6180 0.0100 Air
0.6387 0.2964 PKS-1 |
~0.1272 9.2728 Air
, RAY TRACE DATA
Y (Y)p (Y)g M)
0.25 0. 00000369 0. 000092 0.000023
0.375 -0. 000155 .0, 000074 -0, 000164
0.500 -0. 001056 -0.000574 -0. 001137

Table 11,13 - Three' lens system corrected for secondary color.

0.001

F
b e : ) 0
-0.001
0. 001
C&¥F for a doublet ~
P
' -
a H 0 sf
C and D
-0, 001
~0.5 ] 0.5
Y1

Figure 11.13 - Meridional ray plot at 0°, for triplet.

11-23




MiIL~-HDBK-141 TELESCOPE OBJECTIVES

The meridional ray plot for this lens is shown in Flgure 11. 13a It is plotted on the same scale as the doublet
shown in Figure 11.3. These data show that the triplet corrected for secondary color has to be made to a
much larger f - number than the doublet. One can see that the curves are stronger than the doublet, and .

the higher order spherical aberration is large. The straight dashed line in Figure 11, 13a shows the best
possible aberration curves for F and C light in a simple doublet. The curves for the triplet out to a value
of Y; = 0.4 show that some advantage is gained by using the triplet. Beyond Y1 = 0.4 thereisno
gain at all, for the high order spherical aberration is so heavily under-corrected. If the lens had been stopped
down to a value of ¥, = 0.3 it could have been corrected with a smaller residual aberration. The lens
would then be corrected with approximately one third the aberratmn in a simple doublet. This would give an

f - number of 16.7.

11.4.5.2 Other solutions. The triplet described in Table 11.13 is: not a completely optimized solution. The
higher order aberrations might have been further reduced by adjustmg the air spaces. One must also consi-
der other orientations of the lenses. To illustrate this effect a solution was corrected with the PKS-1 as .

the first element, and F-1 as the final element. This solution is shown in Table 11.14. This shows some .
improvement over the first solution shown. This lens could probably be used at §/11. This lens is better
corrected than the one with F-1 in front. It is not, however, certain that this is a characteristic of the lens.
The second system was designed much more carefully than the fxrs‘c one. Many,many solutions were found: for

" the gecond design. The solutions were found automatically for varymg amounts of primary and secondary '
color, and finally, the zonal spherical aberration was reduced by ad]ustmg the air space between the second
and third lens. The second solution is, we believe, nearly as good a solution as it is poss1b1e to design with
this combination of glass; but we are not sure, for there are many ’t.hmgs that should be studied. For example,
the axial color should probably be made shghtly more negative, ThlS would lower the: F light curve slightly

and raise the C light curve. The two curves would therefore cross further out in the aperture.

LENS SPECIFICATIONS

c t : Glass
0.5334 0.3180 PKS-1
-0.3322 0. 0100 Air
-0.2792 0. 1400 KzFS-4
0.7079 0. 1000  Air
0. 5469 0.1969 F-1
-0.1723 9.018  Air
RAY TRACE DATA
Yy (¥ )p () ¥ ) ¢ .
0.25 0. 0000021 0. 0000127 0. 0000517
0.375 0. 0000028 0. 0001495 0. 0000265
0. 500 -0. 000085 0. 0003700 -0. 0001531

Table 11. 14~ Three lens system corrected for" secondary color. N
The mendwnal ray plot is shown in Figure 11,13b,

11.4.5.3 The amount of computmg that went into the above designs is beyond the comprehension of anyone not
familiar with the problem. We found 16 automatic third order solutions. Usually it took a minimum of four
iterations. For each solution a fifth order and 9 rays were traced.. Only one out of five possible thicknesses
wag used as a variable. Before one could say he really had an optimum solution it would be necessary to check
the effectiveness of varying the thickness, trying the negative lens out front and use other glasses. Thanks to the
modern computer it is beginning to become practical to do this at a reasonable cost. When we realize how
limited our present approaches are to the problem, we can look forward to promising solutions in the future.

. { -
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11.4.6 Evaluation of lens from optical path. The gain in image quality is however, misleading. This is an
example of why one must always remember to consider the physical optics of the problem. Figure 11.13 shows
that if the perfect doublet is stopped down to £/16.7 the C and F light would have a transverse aberra-
tion of 0.00015, with respect to the D light focus. If we assume the focal length is 10 cm then this corres-
ponds to a transverse aberration of 0.00015 cm. There is a relation between the transverse aberration and
optical path difference for shift of focus. The equation is

Yy

OPD = Y . ——
k
2§

where Yk is the transverse aberration for the ray entering the lens at Y,. Inserting the above aberra-

tion into this equation -shows that the OPD in the simple doublet is 0. 038 “wavelengths. Now if the Ray~
leigh tolerance of \/4 is assumed, this means an £/16.7 doublet with a focal length of 10 cm has so little
secondary spectrum. it will never be noticed. Its focal length could be scaled up 0. 25/0.038 times the 10 cm
focal length. This amounts to a focal length of 65.8 cm. Therefore, there is no point whatsoever in design-
ing a lens to reduce the secondary spectrum, when the focal length is less than 65.8 cm , if it has to be stopped
down to §/16.7. The above triplet therefore would not show any advantage until scaled to focal-lengths longer’
than 65.8 cm. To realize a two to one gain over a doublet, it will have to be scaled to 131.6 cm ‘focal
length. At §/16.7 this would be a lens 7.9 cm in diameter. This is getting to be a fairly expensive size’

lens in which to use the unusual glass KzFS-4. .

11.5 SUMMARY

One can now see the relation between a doublet and a triplet corrected for secondary color. One can design
a doublet with two types of glasses and split the positive lens into two and make the system a triplet. Then it
is necessary to find two glasses with the same values of P* and P**_ Since there are only very few glasses
removed from the P versus ¥ line this means that relatively few glasses are available for the positive lens.
By using a third glass type it is possible to use a much larger selection of glasses. In order to find an '
optimum solution it is necessary to study many combinations of glass. One must completely correct the lens
and ray trace the solution before deciding what glass choices are most suitable. There will be variation of
spherical aberration with wavelength. This aberration may become so large that all the advantage of using
the special glasses to correct the first order effects may be completely lost.

11-25






Mil-HDBK-14}

12 LENS RELAY SYSTEMS

12.1 INTRODUCTION

12.1.1 Lens relay systems of the type mentioned in Section 7 (Paragraph 7.5 and Figures 7.5 and 7.6)
are deseribed in more detail here.

12.1.2 Relay systems are used for two purposes: to provide the proper orientation of the image, and
to transfer the light from one region to another. Sometimes the distance between the object and the
final image may be large and, in addition, the diameter of the lenses must not become excessive,
These conditions may require a series of relay lenses resulting in a system called a periscope.

12.2 THE BASIC LENS PROBLEM OF A RELAY SYSTEM

12.2.1 Suppose a relay system is needed to transfer light from an object plane to an imége plane.’ T,hg'
two planes are separated by the distance D, Figure 12.1. The magnification should be -1, :

Figure 12.1 - A single-relay-system.

12.2.2 The diameter of the objective will be determined by the angle u o. The type of lens to use for the
objective depends upon the image quality required. For the moment, however, assume that the relay lens
will consist of two telescope objectives of the type described in Section 11. The objectives could be

placed so that the light would be parallel between them. One could start with any of the lenses shown
in Tables 11.3, 11.5, 11.6 or 1L.7. ] .

12.3 A VISUAL SYSTEM, NUMERICAL EXAMPLE

12.3.1 To evaluate the visual performance with telescope objectives, first suppose that the system is .
a visual system, with a 10X eyepiete (see Section 14) used to view the image.

12,3.2 In Section 11,1, 3 the effect of the Petzval curvature was described. Equation 8-(28) gives the

value of P for a thin lens as -¢/n. The value of P for the relay lens shown in Figure 12,1 would

then be - Dre ? where ne is the effective index of the doublets used for the relay lens. The 10X
De

eyepiece could be any of those described in Section 14. For this example, the very common Erfle

eyepiece shown in Figure 14,19 will be used. According to Table 14,7, the lens will have a value of

P = -0,2125 in reciprocal cm, '

12.3.3 From the data shown in Section 1l on doublets, it is evident that the doublets could be used at
/3.5. If they could be 10 cm in diameter, each doublet could have a focal length of 35 cm, and the .

” distance D would be approximately 70 em, The value of P for the relay lens would then be -0.038.

12.3.4 This is orly 18% of the Petzval contribution introduced by the eyepiece. It is, therefore, probably
negligible as long as the field of view is maintained within the field of the eyepiece. The data in

Figure 14.21 show that this eyepiece can cover about 28° half field with a negative distortion of approx-
imately 8%. The maximum image height is therefore 1. 32 cm. This means that the maximum object

" height will be 1.32 cm.
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12.3.5 The use of other types of lenses for relay objectives is considered here. If two triplet
objectives of the type designed in Section 10 were usad, the value of ng in the equation P= -¢/ng could
be raised to about 3.0 or 4.0. With a value of ne = 4.0, the P value of the relay lens would be -0.014.
This would be completely negligible compared to the value introduced by the eyeplece. On the other
hand, the triplet would not be as well corrected on the axis as the doublets. It is usually not a good
idea to attempt to correct the Petzval curvature of the relay lenses until they start to introduce a
contribution which is one half, or at most equal to, that of the eyepiece.

12.4 SECONDARY COLOR IN A RELAY SYSTEM L

}

12.4.1  In paragraph 6,10. 8. 3 it was indicated that telescope lenses made out of ordmary glass have
an amount of secondary color given by the expressxon

|

Ach . = L
TAch = ——
F-D 2200
12.4.2  The relay lens in the sample problem inFigure 12.1 would have secondary color given by the Lt
equation S L
2y
TAchp pn = .._.1. = .‘1_0_12 . W
2200 2200

}.4.3 Equation (1) shows that the secondary blur at the focal plane of the eyepiece increases as ug -

or D is increased. In the sample problem, ii u = 0.4 and D =70 cm., the radius of the secondary -
blur TAch is 0.005 cm. With the 10X eyepiece, thls would subtend an angle of 0.002 radians.

This is 6. 6 mmutes, which is definitely notlceable but usually tolerated. Any more than this is
objectionable.

12.4.4 Secondary color is usually a serious problem in relay systems If the distance D must be
maintained, then the secondary color can most easily be reduced by making u smaller. A value of
u o = 0.14 means that the exit pupil diameter will be 7 mm. This is desirable for maximum light

transmission, but it could be reduced to 2 mm without impairing the observer’s resolution, This wouldﬁ '

then cut down the secondary color to 2.2 minutes. .
\

12.4.5 The secondary color can be reduced by separating the two doublets. As long as there is
parallel light between the two lenses, the space between the lenses can be considered free space. If
this distance is d, the secondary color is given by the equation

ug {(D-d
TAchp_p = _0_5_) .
' 2206 | @
12.4.6 As d is made larger, the focal lengths of the lenses are reduced. They therefore introduce
more field curvature. It is a fairly general rule that any step taken to reduce secondary color without =
sacrificing clear aperture will result in more field curvature.

13.0 FURTHER DETAILS ON DESIGN OF DOUBLETS AS RELAY LENSE S

For a unit power relay system, there are advantages in using two identical doublets with parallel light
hetween them. Since the doublets are usually air-spaced, this means there are elght glass air surfaces.
I principle it is possible to combine the positive elements of the doublets into a single lens
surrounded by two negatlve lenses. One could also combine the two negative lenses and surround the -
combination with two positive elements. One can see what would be involved in domg this by considering
the solutions shown in Table 11.3. In these solutions, the curvature facing the parallel light ¢, is
about 0.16. In order to make the positive element in the combmed doublets a gingle lens, it' would be
necessary to bend these solutions until ¢} = 0. Take, for example, Case No. 10 in Table 11. 3. If the
lens should be bent to make ¢ = 0, the remaining curvatures would be Cy = - 0.4798, , €g = -0.4694, and
= -0. 2341, The doublet would no longer be corrected for spherical aberration or coma. The spherical
a%erratlon, at least to the third order, could be corrected by adjusting the curvature differences between
and c,.. The coma would, however, be far from corrected. By facing this with an identical doublet,
tl’?e two glane surfaces could be contacted. This means the positive lens could be made into a single
equiconvex lens. The spherical aberration of the doublets would add, but the coma would subtract, to
zero. This argument shows that a triplet relay lens is possible, lbut it also shows that it will probably
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have considerably more higher order spherical aberration than the two doublets. The use of a triplet
of this type could be recommended only when the zonal spherical aberration is tolerable,

12.6 DOUBLE-RELAY SYSTEMS

12.6.1 Often in relay systems one is limited in the diameter of lens which may be used as, for example,
when the lens must be confined to a given diameter. In the single-relay example described in 12. 3. 3,

the relay was allowed to have a diameter of 10 cm. Suppose there was a limitation to a 5-cm. diameter

for all lenses. In order to maintain u_ = 0.14, it would be necessary to use a double-lens relay system as

o
illustrated in Figure 12.2.

to First Field Second B
relay lens relay
lens lens

Figure 12.2 - A double-relay system.

©12.6.2 In the double-relay lens system, the'first and second relay lenses must have just one—MK
the focal length of the single-relay lens. They will, therefore, each add twice the Petzval contribution.

12.6.3 The two.relay lenses will not introduce any more secondary color. Each relay transfers by
the distance D/2, so that each has half the secondary color; but they add, so the total comes out the
same. Equation (1) still applies for a double relay system. . X

12.6.4 . Note that in Figurel2,2 an extra lens has been added in the intermediate focal plane. This
is called a field lens. Its function is to image the chief ray passing through the center of the first relay
lens at the center of the second relay lens. This field lens has a focal length equal to D/8. It will also
introduce negative field curvature equal to 8/Dn.

12.6.5 One can see then that doubling up the relay system in order to reduce the diameter of the.
lenses has introduced Petzval field curvature. The relay lenses introduce four times as much field
curvature, and the field lens adds as much as one of the relays. The double-relay lens, therefore,
introduces six times as much field curvature as the single-relay system of equal length and numerical
aperture. The secondary color is not changed.

12.6.6 Reducing the field of view. One can argue that there is little to be gained in reducing. the field
of view. The eyepiece is designed for, and capable of, viewing an object height of 1. 32 cm. It is true
that the relay lenses are going to make the image at the end of the field more blurred, but to introduce.
a stop at the field lens would merely mean a slightly smaller field lens. The savings in cost would be
. negligible. ¥ one decides to use doublet relay lenses, nothing is lost in using the full field of the
eyepiece, It ?s better to see the wide field, even if it is blurred, than to stop it down. As a rule,
" the field of a visual instrument should not be reduced if the extra field can be obtained with no increase
in cost and size of instrument.

12.6.7 Relay lenses corrected for field curvature. If the problen: demands improved quality at the
edge of the field, it is necessary to abandon the doublet relay lenses and use a lens with reduced field
curvature. Triplets as deseribed in Section 10 may be used if one does not try to increase ng beyond 4.
If this is not enough, a double Gauss lens is recommended. :
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12.6.8 Field lenses corrected for field curvature. It is possible to introduce compound field lenses,

such as triplets, to reduce the Petzval curvature of the field lens, If the fiéld lens is located between
the two unit power relay systems, it must be symmetrical. It will have to perform for a finite con-

jugate, and the region of solution will be quite different from the lenses described in Section 10,

can think of the lens as basically two inverted telephoto objectives with parallel light between them.

The lens can be roughed out by first designing one side. One.should avoid placing a lens surface
directly in the intermediate focal plane, for it will eventually collect dust. :

12.7 SUMMARY ‘ |
12.7.1 Relay systems are inherently limited by problems of field curvature and secondary color.
One should always try to use as few relays as possible, until glass weight and cost become a problem:

12.7.2 If it is necessary to use more than one relay, the same rules apply. The relay and field

lenses should be kept as large as practicable. The size of the relay or field lenses should never be
reduced needlessly. ,!

12.7.3 The secondary color depends on the over-all distance of relay and the value of ug. If the
secondary color becomes gerious, it is necessary either to accept it, reduce u j, or resort to special
lens materials, '
12.7.4 Whenever attempts are made to correct the field curvafure, more secondary color is
introduced. See Figure 6.21. ; ,
| : :
12.7.5 Doublet relay lenses are usually prefered to other more complicated types! They represent
a good compromise between simplicity, cost, number of surfaces, 'and reasonable image quality. It is.
possible rapidly to reach a point of diminishing returns in trying to reduce field curvature: the result
will ‘be a design with increased secondary color and chromatic variation of aberrations.

, .
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