Electro-Optical Kluges and Hacks

A Lab Rat's Guide to Good Measurements

Phil Hobbs,
IBM T. J. Watson Research Center
Yorktown Heights NY
Hacks Of The Day

- Quantum detection
- A little noise theory
- Low noise front ends
 - Design tricks and circuit hacks
 - Detailed example: bootstrapped cascode TIA
- Noise Cancellers & Their Relatives
 - Motivation
 - Details
 - Other linear combinations (locking a laser to an etalon)
- High-Performance Pyroelectrics
 - Low speed wins!
- Higher speed
 - Impedance transformation: transformers, reactive networks, constant-resistance T-coils
Quantum Detection
(Optical View)

- One photon gets you one electron ($\eta \sim 1$)
- Shot noise is the intrinsic limit (*pace* squeezers)
- N photons/s gives 0 dB SNR in $N/2$ Hz, max
- Signal and spurious junk are inseparable after detection

- **Etendue** ($n^2 A\Omega$) management for speed and low noise:
 - Achievable BW goes as average radiance ($W/cm^2/sr$)
 - Leakage, background, and capacitance go as the area
 - Reduce area, increase NA, consider immersion lens
 - High current density (>10 mA/cm2) causes nonlinearity

 (And, just between you and me: small detectors are *really* hard to align)
Analytic Signals

- Circuits people use one-sided BW
- Analytic signal convention
 - Measurable quantities are real-valued
 - Analysis is easier in complex exponentials
- Analytic signal definition
 - Double signal at $f > 0$
 - Leave DC alone
 - Chop off all $f < 0$
 - A bit problematic at DC
- Causes mysterious factors of 2:
 - Mean square AC power doubled
 - 1-s boxcar has 0.5 Hz noise BW
 - $N^{1/2}$ in 1s is $(2N)^{1/2}$ in 1 Hz!
Noise Physics

- **Johnson Noise:**
 - Classical equipartition & fluctuation-dissipation theorem
 - Johnson noise PSD $P_{NJ} = kT \frac{1}{2}$ J/s/Hz when matched
 - $v_N = (4kTR)^{1/2}$, $i_N = (4kT/R)^{1/2}$ in 1 Hz (unmatched)
 - Noise temperature $T_N = T_{amb}$ (resistor), $T_N << T_{amb}$ (LNA)

- **Shot Noise:**
 - Photodetection is a Poisson process: variance = mean
 - Shot noise limit: $i_{N_{shot}} = (2eI_{dc})^{1/2} > (4kT_N/R)^{1/2}$ when:
 - Signal drops 50 mV across R_L (300K)
 - Signal power $>7 \mu W$ in 50Ω (very quiet amp [35K])
 - *NB:* It's easy to make currents with no shot noise (metal resistor)
 - Pauli principle forces electrons to be highly correlated: noise power suppression is \sim (mean free path)/(length of resistor)

- Technical noise (stay tuned)
Noise Definitions

- **Noise statistics are ensemble averages** or short-time averages.
 - They can be time-varying.
- **Signals at different frequencies add in power** since beat term averages to zero.
- Noise best specified as power spectral density (PSD): for reasonable bandwidths, think of this as noise in 1 Hz BW.
 - \(P_N \) is PSD, \(P_N \) is total noise power.
- **Noise Bandwidth:**
 - \(BW_N = \frac{\text{total noise power}}{\text{peak noise PSD}} \)
 - Equivalent width of power spectrum.
 - \(BW_N = \frac{1}{\text{autocorrelation width of impulse response}} \)
 - Generally wider than 3 dB BW (\(\pi/2 \) times for RC rolloff).
Quantum Detection
(Circuit View)

- **Output Current:**
 - consists of \(N \) Poissonian pulses/s regardless of QE and \(I_{\text{dark}} \)
 - Gain can't fix this (PMTs just give bigger pulses)

- All fundamental noise sources are white

- **Circuit Model:** current source shunted by \(C_d \)
 - \(C_d \sim 100 \) pF/cm\(^2\) for a good PIN device, fully depleted

- **Square law device:**
 - \(P_{\text{opt}} = hN, P_{\text{el}} = (eN)^2 R_L \)
 - Electrical power theoretically unlimited as \(R_L \Rightarrow \infty \)
 - Johnson noise is always \(kT/s/Hz \): weak signals are easily swamped
Detection Regimes (Quiet Source)

- **Photon counting:**
 - $N < 10^8$ photons/s (40 pW @ 500 nm)
 - Use PMT or Geiger-mode APD (< 1 MHz)
 - Useful BW (20 dB SNR) $\sim \frac{N}{200}$

- **Shot-noise limited:**
 - $i_d R_L > 50$ mV @300K
 - Can always get there with bigger R_L(Si, InGaAs) but BW suffers

- **Otherwise Johnson-limited:**
 - Nice quiet photoelectrons are immersed in circuit noise
 - Circuit constants are the problem
 - Circuit hacks can be the solution
Escaping Johnson Noise

- Additive circuit noise swamps photoelectrons
 - Very wasteful--we've paid a lot for those photons!

- 3 dB SNR improvement can save:
 - Half the laser power needed
 - Half the measurement time required
 - Half the cost and 2/3 the weight of the optical system

- To escape Johnson
 - Smaller detectors, higher bias (reduces C)
 - Low noise amplifiers (reduces noise)
 - Electron multiplying detectors or cooled CCDs (increases signal)
 - Impedance transformation networks (increases signal)
 - Other circuit hacks
Example:
Low-Level PIN Photodiode Front End

- **Design Parameters:**
 - Bandwidth: $B \geq 1$ MHz
 - Obese 1 cm2 Si PIN Photodiode, $C_d = 100$ pF (fully depleted)
 - Photocurrent: $i_{\text{phot}} = 2 \mu$A
 - Photon arrival rate $N = \frac{i_{\text{phot}}}{e} = 12.4$ THz
 - SNR: Within 2 dB of shot noise limit
 - Maximum SNR = $N / 2B = 68$ dB in 1 MHz
Front End Choices

- Load resistor
- Transimpedance amplifier
- Bootstrap + load resistor
- Cascode transimpedance amp
- Bootstrapped cascode TIA
Load Resistor

- **First Try**
 - \(R_L = 1 \text{ M}\Omega : \text{BW} = 1600 \text{ Hz} \) (ick)
- **Everything is wired in parallel:**
 - Signal and noise roll off together
 - SNR constant even though signal rolls off by 55 dB
 - Subsequent amplifier limits SNR
- **Optimization:**
 - Lower \(R \) increases BW, but SNR drops due to Johnson noise
 - Shot = Johnson when \(IR = 2kT/e \) (~50 mV@300K)
 - Optimum \(R \) drops ~ 200 mV
 - \(R_{\text{opt}} = 100\text{k}, \text{BW} = 16 \text{ kHz} \)
Transimpedance Amp

- Connect PD to virtual ground
 - Op amp wiggles output end of \(R_F \) to keep input end still
- Improves BW but not SNR
 - 3 dB BW \(\approx 0.5 (f_{RC} \cdot GBW)^{1/2} \)
- Unity gain stability unnecessary
- Big improvement but don't push it too much:
 - Noise and instability problem due to capacitive load on summing junction
 - Fast amplifiers are worst
- 0.5 pF \(C_f \) helps instability but can't fix SNR problem
Transimpedance Amp

- **Transimpedance BW**
 - Less than closed-loop BW
 - Depends on values not ratios
 - Actual BW obtained depends on frequency compensation

- **Low noise**
 - Amplifier noise dominates at large R_f
 - Active devices can have $T_N << 300K$ ($T_N = eN_i/N / 4k$)
 - ~10K for good bipolar op amps
 - Even lower for FETs but needs inaccessible impedance levels
DIY Op Amps

- Current noise of op amp appears in parallel with I_{phot}
 - Treated just like signal: no high freq SNR penalty

- Voltage noise of op amp sees full noninverting gain
 - Big noise spike at high freq, due to C_d (differentiator)

- Reducing e_{Namp} means running the input stage at higher bias
 - add a BJT stage to the front
 - Increases i_{Namp}, but that's OK
Cascode TIA

- **Isolate C_d** from summing junction with cascode Q_1
 - BW limited by emitter impedance $r_E = 1/g_m$
 - BW(Hz) = 6.2 I_C / C_d

- **Biasing cascode** with sub-Poissonian I_{bias} reduces r_E
 - Improves BW
 - Noise now limited by $R_{b'}$ and shot noise of I_b
 - Noise multiplication much reduced compared to TIA
Bootstrapping

- **Bootstrap transistor**
 - Follower forces cold end of $D1$ to follow hot end
 - No voltage swing
 - \rightarrow no capacitive current
- **Speed set by** $r_E C_d$ not $R_L C_d$
 - 50x faster than RC at $I_{dc}=300$ μA, $R_L=100$ kΩ
- **Superbeta transistor**
 - $\beta \approx 1000$: Very low base current noise
- **Noise Voltage**
 - Limited by R_b and $r_E(2eI_C)^{1/2}$
 - Noise multiplication similar to TIA
- **Can be applied with other techniques**
Bootstrapped Cascode TIA

- Can't use enough Q_1 bias to get 1 MHz BW without being limited by I_b shot noise and R_b' Johnson noise
- Bootstrap runs at higher current: lower voltage noise
- Reduces effective C_d
 - Superbeta transistor Q_2 has much lower base current shot noise, so can run at higher current than Q_1 without ruining the SNR
 - Bootstrap can be applied along with cascode
Bootstrapped Cascode TIA

- Final performance:
 - Within 1 dB of shot noise, DC-1.3 MHz
 - 600x bandwidth improvement over naive approach
- Three turns of the crank to get 1 MHz BW with 100 pF & 2 μA
- Not much more juice available here:
 - optical fix needed next time

Bottom: Dark noise
Top: 2 μA photocurrent
Detectors With Gain

- **Electron Multiplication**: used in PMTs, APDs, & LLLCCDs
 - Gain applied to electrons before front end amplifier
 - Front end noise contribution reduced by M
 - Allows low load resistances => increased BW

 HOWEVER,...

 - Gain inherently noisy (at least 3 dB noisier than PIN)
 - Other tradeoffs depend on device (e.g. GBW of APD)

- **Shot noise doesn't improve**:
 - N photons per second gives 0 dB SNR in N/2 Hz, max
 - Gain amplifies noise along with signal
Noise Physics Again

- **Technical Noise**
 - Usually dominant in laser measurements, especially bright field
 - Dominates in large-signal limit \((p_N \sim P_{\text{opt}}^2) \)
 - Laser RIN, demodulated FM noise, wiggle noise, below-threshold side modes, mode partition noise, coherence fluctuations microphonics, \(1/f\) noise, noisy background, phase of the moon, pink elephants,.....

- Many strategies for getting round it, such as:
 - **Reduce background**: Dark field and dim field
 - **Move to high frequency**: Heterodyne interferometers
 - **Move at least a little away from DC**: Chopping
 - **Compare beam before and after sample**: Differential detection

- NB: Lots of possibilities, because there's no 100% solution
Shot Noise

Rule of One

- One coherently added photon per second gives an ac measurement with One sigma confidence in a One hertz bandwidth.

- True for bright field or dark field:
 - Bright field == dark field, except for technical noise
 - BF: Source instability (RIN)
 - DF: Johnson noise
 - DC is actually 3 dB better for a given temporal response, except for the usual baseband suspects
Apart from shot noise, \(I_{\text{sig}} \) and \(I_{\text{comp}} \) are perfectly correlated.

Optical systems are extremely linear and wideband.

Photodiodes can also be extremely linear and pretty wideband:

\[\frac{i_{\text{sig}}}{i_{\text{comp}}} = \frac{I_{\text{sig}}}{I_{\text{comp}}} \]
(differential gain == average gain)

If the DC cancels, the noise cancels at all frequencies.

Problem: only works with beams of identical strength:

Need to ship a grad student with each system to keep it adjusted.
With fixed ΔV_{be}, the ratio of I_{C2}/I_{C1} is constant over several decades of I_e.

- Linear splitting \Rightarrow fluctuations and DC treated alike
- (Q_1 is in normal bias as shown—the collector can go 200 mV below the base before saturation starts)
- Transistors can be fast
- Adjusting ΔV_{be} to null out the photocurrent doesn't disturb the subtraction
Basic Noise Canceller

- Add a diff pair to a current-differencing amplifier
- Use feedback control of ΔV_{be} to null the DC
 \Rightarrow Noise cancels identically at all frequencies
- Cancellation BW independent of FB BW
- Linear highpass O/P, log ratio LP output (ΔV_{be})
- $1k:26\Omega$ divider gets rid of kT/e factor in ΔV_{be}
 $[2V \iff \exp(1)]$
Performance: Cancellation

He-Ne showing a strong mode beat (oscilloscope traces)

Upper: TIA mode showing beat waveforms due to 4-wave mixing (comparison beam blocked)

Lower: Cancellation to 0.5 dB above shot noise (comparison beam unblocked)

3N3904 discrete BJT
0.75 mW P_{sig}, 1.5 mW P_{comp}
Performance: Cancellation

He-Ne in quiescent period
Upper: TIA mode, showing noise and 22 kHz ripple
Lower: Cancellation to 0.5 dB above shot noise

Envelopes of 100 scans, showing mode beats sweeping
Upper: TIA mode
Lower: >50 dB cancellation, even with multiple modes

3N3904 discrete BJTs
0.75 mW P_{sig}, 1.5 mW P_{comp}
Performance: Cancellation

- 50-70 dB RIN reduction at low frequency, ~40 dB to 10 MHz
- No critical adjustments
- Cancellation at high currents limited by differential heating
R_E Degeneration

- Discretes run at different T
 - \Rightarrow Less cancellation at high I_c
 - Use monolithic matching
- Main remaining limit is failure of BJTs to be exponential at high currents
 - R_E produces negative feedback on emitters, tending to even out the current split
 - Apply positive FB to the bases, keeping intrinsic V_{BE} constant
RE Compensator

- Requires a current mirror plus a few extra resistors
- Flattens out rejection curve, 10-25 dB improvement
Differential Version

- Add second signal beam
- Run slightly unbalanced ($I_{\text{sig1}} > I_{\text{sig2}}$)
- Differential pair sees only the slight imbalance $I_{\text{comp}} > (I_{\text{sig1}} - I_{\text{sig2}}) \ll I_{\text{sig1}}$
- Limitations of BJTs circumvented
- 3 dB noise improvement (both signal beams contain information)
- Using log output requires more thought
- 160 dB SNR (1 Hz)

$I_{\text{sig1}} = 1.48 \text{ mA}$
$I_{\text{sig2}} = 1.26 \text{ mA}$
Differential noise canceller, diode laser, ~0.5 mW/beam

$BW = 1.1\text{ MHz}$

Beam scanning around inside a chamber with a sandblasted aluminum back wall (some mode hopping)

Noise canceller leaves only shot noise

Very gaussian over >10 orders ($300\text{ kHz} - 8\mu\text{Hz}$)

Imputed error $\sim0.1\text{ dB}$ over full range (1-parameter fit to exact noise BW)
Multiplicative Noise

- Signal beam: 50 kHz AM
- Comparison beam vs flashlight
- Laser: Distorted 30% AM at 5 kHz
- Noise intermod suppression: \(\geq 70 \) dB
- Power returned to signal
- Peak heights are independent of power level
- Intermod suppression depends on loop gain, but:
 - The signal being ratioed has had its additive noise cancelled at all frequencies
 - Noise performance greatly improved--no additive noise!
Log-Ratio Only Version

- Eliminate A_1, swap diff pair inputs to keep FB negative
- Gives widest log BW (> 1 MHz)
- BW depends on signal levels
 - Possible parametric effects
 - Much less serious than with analogue dividers
- Noise floor 40-60 dB lower than dividers'
- Noise limited by base resistance Johnson noise at high currents
- R_E compensation applicable
Performance: Log Noise Floor

- Shot noise of I_{sig} and I_{comp} add in power => noise floor at least 3 dB above shot noise (but stay tuned)
- Noise floor is very flat and stable, generally within 0.5 dB of SNL except at high currents (and parallelling transistors can improve that)
Log Ratio Spectroscopy

- Sensitivity ~ 1 ppm absorption
- Shot noise limited even with huge \(dP/d\omega \) (\(\Delta P \sim 30\% \) over scan range)
- Etalon fringes eliminated by subtracting pressure-broadened scan
Noise Cancellers and You

- The Good News:
 A noise canceller will cancel all correlated modulation down to the shot noise level
 - Laser RIN is substantially eliminated
 - Error in ratiometric measurements is greatly reduced

- The Bad News:
 Everything else will be left behind

- Everything depends on the correlation between signal and comparison beam remaining high
- You're going to learn things about your beams that you never wanted to know: Coherence fluctuations, spatial side modes, amplified spontaneous emission, polarization instability, vignetting, and especially etalon fringes
Applications Advice

System design

- **Etalon fringes:**
 - Keep design simple, avoid perpendicular surfaces
- **Spontaneous emission:**
 - Use an efficient polarizer right at the laser
- **Spatial decorrelation:**
 - Don't vignette anything after the beam splitter
- **Path length imbalances:**
 - Keep path lengths within ~ 10 cm of each other
- **Photodiode linearity:**
 - Keep current density lowish & reverse bias highish
 - Transistor linearity: $I_D > 1$ mA requires differential model or R_E compensation
 - Keep balance somewhere near 0 V (big negative voltages hurt)
Applications Advice

System design

- **Temperature stability**
 - Etalon fringes drift like crazy (>10% transmission change/K)
 - Photodiode windows a common culprit
 - Log ratio output proportional to T_J
 - Temperature-stabilize T_J using monolithic quad (MAT-04)
 - 1 heater, 1 thermometer, 2 for diff pair
 - $\sim 10^{-5}$ absorption stability in 1 hour

- **Care and feeding of photoelectrons:**
 - Never put photodiodes on cables--put the amplifier right there
 - Photodiode electrical shielding often required

- **Alarm conditions:**
 - Use a window comparator on the log ratio output to check for fault conditions, e.g. no light
Applications Advice

Setup & Testing

- Shot noise is easy to verify & you get the frequency response free!
 - A flashlight generates a photocurrent with exactly full shot noise
 - A dc-measuring DVM is all you need to know $i_{N\text{shot}}$
 - Source is white => Output Noise PSD == frequency response

- Check cancellation behaviour
 - Block comparison beam to turn canceller into an ordinary TIA
 - Use a flashlight to replace I_{comp} in log ratio mode (ΔV_{be} constant)
 - Compare I_{comp} and I_{sig} to ΔV_{be} formula--do they agree?

- Wiggle and poke things
 - Tapping components with the eraser end of a pencil will tell you which ones are generating the fringes
Laser noise depends on polarization, position, and time
 - Noise is spatially variable (interference with spontaneous emission and weak spatial side modes):
 - Vignetting can destroy correlation

Etalon fringes demodulate everything
 - Mode partition noise, FM noise, weak longitudinal side modes, and coherence fluctuations turn into AM
 - Polarizing cube has 2-5% p-p fringes if perpendicular to beam
 - FSR is only 0.13 cm$^{-1}$ (fringes really demodulate everything)
 - Be paranoid about fringes

Spontaneous emission
 - Has different noise than laser light & will split differently
Coherence fluctuations
- All optical systems are interferometers

\[I_{dc} \propto (|\psi_1|^2 + |\psi_2|^2) + 2 \text{Re}\{\psi_1 \psi_2^*\} \]

- Interferometer path imbalance of 1% of coherence length => 40 dB SNR in \(\Delta \nu \), maximum (\(|\psi_1| = |\psi_2|\))
- Outside coherence length, fringes turn into *noise*
- Full interference term becomes noise in bandwidth \(\sim \Delta \nu \)
- Can easily dominate all other noise sources if \(\Delta \nu \) isn't \(>> \) BW

Time delays
- Delaying one arm reduces noise correlation due to phase shift
 - To get 40 dB cancellation, phase shift \(\omega \Delta t < 0.01 \) rad
Summary: Low Frequency Front Ends

- It isn't just about detectors

- **Good analogue design** can give huge performance gains
 - bootstrapping
 - cascode TIAs

- **Careful system design** prevents trouble:
 - Etalon fringe elimination
 - Believing your noise budget

- **Linear combinations** --used intelligently-- make hard things easier
 - Differential detection
 - Laser noise canceller
 - Cavity locking
What Are My Customers Really Doing?

- Quantitative Evaluation of Store Design
- See Where Customers Go & What They Look At
- Real-time Feedback On Store Ops
 (To make it worth instrumenting every store)

- Distribute Cheap Sensors In The Ceiling
- Extract Trajectories Automatically
$10 Pyroelectric Camera

Array of Distributed Pyroelectric Sensors
- Sensors Mounted In Ceiling
 ~ 100 pixels/sensor
- 100-1000 Sensors Per Store (100-200 sq ft each)
- Base Manufacturing Cost: $50-100
- Pyroelectric Effect

- Ferroelectric PVDF (fluorinated Saran Wrap)
- Ferroelectric Has Frozen-In E
 - Like Remanent B In A Ferromagnet
- Polarization drops $\sim 1\% / K$
- Free Charge q Flows To Zero Out E_{total}, so Δq gives ΔT
- Very inexpensive
- Inherently AC: Static Objects Disappear
Multiplexed Pyroelectric Array

IR FPA sensitivity, porch-light cost
- Free-Standing PVDF Film In Air
- 8 x 12 Array, 6 mm Pitch
 (Tee-shirt Lithography)
- Needs Fancy Multiplexer
Optical Design

Moulded Polyethylene Fresnel Lenses

INFRARED FRESNEL LENSES

Wavelength (microns)

Transmittance (%)

7.5-13 µm
IRstart1
OPTICAL SYSTEM LAYOUT

UNITS: MM
DES: Budd
Thermal Design

Slow is Beautiful

- Signal Power $\sim G^{-2}$
- Johnson Noise Is Flat
- (Fluctuation PSD $\sim G$)
- Bandwidth $\sim G/M_{\text{th}}$
- Johnson-Limited SNR $\sim 1/G$

\Rightarrow Insulate the Sensor & Filter Data To Recover BW

$$G_{\text{Total}} = G_{\text{Rad}} + G_{\text{Cond}} + G_{\text{Air}}$$

$$\Delta T = \frac{\varepsilon I}{G_{\text{Total}}}$$

$$\frac{dT}{dt} = \frac{\varepsilon I - G_{\text{Total}} \Delta T}{dM_{\text{th}} / dA}$$
Thermodynamic Efficiency

- Sensitivity proportional to surface emissivity
- Carbon ink is shiny at 10 µm
- "Swiss-cheese" ink blanket halves the thermal mass
- Tuned metal coating increases ΔT
- Ink lattice on tuned metal should give ~ 20 dB more signal
Sensor Design: Multiplexer

- $\Delta T_{\text{pixel}} \sim 8 \text{ K} \ (\text{Human Crossing the Floor})$
- $\Delta q/\Delta T_{\text{pixel}} = (3 \text{V/K})(160 \text{ pF}) \sim 500 \text{ pC/K}$
- $\text{BUT: } \Delta T_{\text{pixel}} / \Delta T_{\text{IFOV}} \sim 0.002, \tau \sim 2 \text{ s} \ (10 \text{ Frames})$
 - Total Signal Available $\sim 0.1 \text{ pC/pixel/frame}$

- Multiplexer Leakage $\leq 5 \text{ pA}$
- Charge Injection $< 0.5 \text{ pC}$
- Nothing like it is available commercially
Diode Switches

- Nanoamp Leakage
- Control And Data Paths Not Separate
- Unidirectional And Nonlinear: Bias Required

\[I_F = I_S \left(\exp \left(\frac{eV_F}{kT} \right) - 1 \right) \]

\[R_0 = \left. \frac{\partial V_F}{\partial I_F} \right|_{V_F=0} = \frac{kT}{e I_S} \]

- 1 mA \(I_F \): Si diode \(\sim 0.65 \) V, LED \(\sim 1.6 \) V

 => \(I_S \) for a LED Should Be \(10^{-16} \) That of Si

- \$0.05 LED has \(|I_F| < 100 \) fA, -5 V < \(V_F < +0.5 \) V
Biasing Hack

- Need 1-5 pA Bias Per Pixel, CPU Adjustable
- $10^{12} \ \Omega$ Resistors Don't Come in SMT
- Use Photocurrent Instead

- LED Is a Photodiode Too
- Use Diffused Light From CPU-Throttled LEDS
- 1 mA LED Drive => 1 pA Bias
- Switch + Adjustable Bias = 1 LED @ 0.05/Pixel
Footprints Data

(Raw data, 1 sq ft pixels, 28 µm metallized PVDF)

(Pseudo-integral, 1 sq ft pixels, 4 µm carbon ink on 9 µm PVDF)
Footprints Data

(Pseudo-integral, 1 sq ft pixels, 4 µm carbon ink on 9 µm PVDF)
More if time permits....
Going Faster: RF Techniques

- TC reduction goes only so far
 - Impedance Transformation
 - Reactive networks
 - Transmission-line transformers
 - Constant-resistance T-coils

- Low-noise RF amps
 - 35K noise temperature: 9 dB improvement vs 300K
 - Driving 50Ω
Noise Figure & Noise Temperature

- Ways of quoting low noise levels

- Noise Figure
 - NF = 10 log[(SNR before)/(SNR after)] (300K source)
 - 3 dB is garden-variety
 - < 0.4 dB is the state-of-the-art @ 1-2 GHz (Miteq)

- Noise Temperature
 - Very low NFs awkward to use
 - $T_N = P_N / (kB)$
 - $T_N = 300K(10^{\frac{NF}{10}} - 1)$
 - 3 dB NF = 300K T_N, 0.5 dB NF = 35K T_N, LT1028 = 15K (@1kHz)
 - $T_N \ll T_{ambient}$! (F-D theorem doesn't apply to active circuits--or refrigerators for that matter)
Impedance Transformation

- **PD is a current source**
 - Signal power proportional to $\text{Re}\{Z_L\}$
 - Increasing Z_L at the diode can improve SNR
 - Want all-reactive networks
 - Resistors in the matching network dissipate power uselessly and add a 300 K noise source to a ~ 40 K system

- *Not* an impedance matching problem for $\lambda < 1.8 \ \mu\text{m}$!
 - Available power not fixed for Si, InGaAs PDs
 - Source impedance poorly defined
 - IR diodes, e.g. InAs, InSb, HgCdTe have low shunt resistances:
 - Available power is fixed, so impedance matching is relevant
Impedance Transformation

- Low Noise Amps
 - PD is a nearly-pure reactance => almost noiseless
 - 35K amp is 9 dB quieter than 300K amp for reactive source
 - BJT emitter ideally has $T_N = T_{amb}/2$,
 - ideal BJT base has $T_N = T_{amb}/(2\beta)$--same noise voltage, β times higher impedance
 - Connect PD straight into MMIC with no resistor or capacitor--fix frequency funnies afterwards, at higher signal levels

- Transformers
 - Quiet RF amps are all around 50 Ω (amps are typically 2:1 VSWR, so it might be 100Ω or 25Ω)
 - $N:1$ turns ratio gives N^2 impedance change
 - Transform 50 Ω up for Si PD, or down for, e.g., InAs
Bode Limit

- How wide can we go?
 - Bode theorem specifies tradeoff between BW and insertion gain Γ

$$\int_0^\infty \ln\left(\frac{1}{|\Gamma|^2}\right) d\omega \leq \frac{2 \pi}{RC}$$

- $|\Gamma|^2$ is the return loss (fraction of power reflected from the load)
- RC has 1.03 dB average passband loss (to 3 dB points)
- Choose $|\Gamma|^2 = 0.21$ (79% efficiency, or 1.03 dB signal loss)
 - BW increases 4x vs RC, for no net signal loss whatsoever
- 3 elements will usually get within 0.5 dB of this limit
- Increasing mismatch gains bandwidth almost reciprocally
 - $|\Gamma|^2 = 0.5$ gives 9x BW @ 3 dB loss
L-Network or Series Peaking

- **Simplest Reactive Network**

 - Moves RC bandwidth from DC to f_0 (same BW, settling time doubled)
 - $Q = \frac{X}{R}$ [at resonance, $Q = \frac{1}{\left(\omega_0RC\right)}$ (ratio of f_0 to f_{RC})]
 - Bandwidth $BW_{3dB} = \frac{\omega_0}{Q}$
 - Transforms load impedance by a factor of $Q^2 + 1$
 - $50 \ \Omega, \ Q = 10 \Rightarrow$ effective $RL = 5k\Omega$ (pure resistance at ω_0)
 - Can also be used at baseband for a $1.4x$ BW increase
Constant-Resistance T-Coil

Tektronix Vertical Amplifier Secret

- Doesn't waste current in R while there's C to charge
- 2.8x BW increase (at 3 dB points)
- No overshoot or ringing
- Design equations available

- Best simple network for baseband use (lowpass characteristic)
- Disadvantage: Load resistor and output are different nodes
 - Harder to get $T_N < 300K$ (may have to put active device in for R)
Example: 5 pF PD, DC-50 MHz

- **Direct connection to 50 Ω**
 - BW = \(\frac{1}{2\pi(5pF)(50Ω)} \) = 640 MHz
 - Shot noise limit: \(I_{\text{phot}} \geq 1 \text{ mA} \) (300K), 370 µA (35K)
 - *Wasteful*

- **3:1 Turns Ratio Transformer (450Ω)**
 - BW = \(\frac{1}{2\pi(5pF)(450Ω)} \) = 70MHz
 - Shot noise limit: \(I_{\text{phot}} \geq 115 \text{ µA} \) (300K), 13 µA (35K)
 - (DC current x AC resistance > 50 mV (300K), > 6 mV (35K))
 - *9 dB SNR improvement (Johnson limit)*
Example: 5 pF PD, DC-50 MHz

- **Constant-Resistance T-Coil:**
 - 2.8x BW increase, resistive load
 - Can be used with 6:1 transformer
 - $R_L = 1800\,\Omega$
 - SN Limit: 29 μA (300K), 3.4 μA (35K)
 - Best step response
 - 15 dB SNR improvement

- **Bode Limit:**
 - 4x BW increase, resistive load
 - $R_L = 2550\,\Omega$
 - SN Limit: 20 μA (300K), 2.4 μA (35K)
 - 17 dB SNR improvement
 - Beyond there, you have to trade off SNR or reduce C_d
Example: 5 pF PD, 250+-5 MHz

- Put passband anywhere you like
 - Simple 81 nH series L, 5 Ω load
 - $R_L=3130$ Ω (Q=25--no higher)
 - Use e.g. a cascode or 1:3 xfrmr
 - Can tune by changing V_{bias}
 - SN Limit: 16 μA (300K), 2 μA (35K)
 - 17 dB SNR improvement vs 50 Ω

- Bode Limit:
 - 4x BW increase, resistive load
 - $R_L=12.8$ kΩ
 - SN Limit: 4 μA (300K), 0.5 μA (35K)
 - 24 dB SNR improvement vs 50 Ω