Application Note

Robert Hickey
11/12/97

Extracting Scattering Parameters from SPICE

Scattering, or S parameters are easily generated by an AC analysis in SPICE. S parameters are defined with respect to incident (a1 and a2) and reflected (b1 and b2) voltage waves defined by the diagram below and by:

```
a1 = (V1 + Z0 * I1 ) / ( 2 * SQRT( Z0 ) )
(Eq. 1)
b1 \(=(\mathrm{V} 1-\mathrm{Z} 0 * \mathrm{I} 1) /(2 * \operatorname{SQRT}(\mathrm{Z} 0))\)
(Eq. 2)
a2 \(=(\mathrm{V} 2+\mathrm{Z} 0\) * I 2\() /(2\) * SQRT( Z0 ) )
(Eq. 3)
b2 = ( V2 - Z0 * I2 ) / ( 2 * SQRT( Z0 ) )
(Eq. 4)
```


The scattering matrix relates the incident and reflected waves.
(Eq. 5)
\(\left|\begin{array}{l}b1

b2\end{array}\right|=\)| S11 | S12 |
| :--- | :--- |
| S21 | S22 |\(\left|\begin{array}{l}a1

a2\end{array}\right|\)
$\mathrm{S} 11=\mathrm{b} 1 / \mathrm{a} 1$ for the case when $\mathrm{a} 2=0$. a 2 is the wave reflected from the load back toward the output port and is zero when the load is the impedance used to define the S parameters. Hence,

$$
\begin{equation*}
\text { S11 }=\frac{\mathrm{V} 1-\mathrm{Z} 0 * \mathrm{I} 1}{\mathrm{~V} 1}+\mathrm{Z} 0 * \mathrm{I} 1 \tag{Eq.6}
\end{equation*}
$$

Noting that Z1 = Zin = V1/I1, we have the familiar

Let the Voltage Source be 2 Volts. This value simplifies calculations without compromise, for an AC run in SPICE is a small signal analysis. The voltage at the network input is then found from a voltage divider as:

$$
\begin{equation*}
\mathrm{V} 1=(2 * \mathrm{Z} 1) /(\mathrm{Z} 1+\mathrm{Z} 0) \tag{Eq.8}
\end{equation*}
$$

Solving for Z 1 in terms of V1 results in:

$$
\begin{equation*}
\mathrm{Z} 1=(\mathrm{V} 1 * \mathrm{Z} 0) /(2-\mathrm{V} 1) \tag{Eq.9}
\end{equation*}
$$

Substituting this in Eq. 7 yields the simple result:

$$
\begin{equation*}
\mathrm{S} 11=\mathrm{V} 1-1 \tag{Eq.10}
\end{equation*}
$$

This is more intuitive than many S parameter results. If a 2 volt source is used at the input, and if the input is perfectly matched, V1 will be 1 Volt. Subtracting 1 from that leaves S11 of zero, a "proper" result for a perfect impedance match. In SPICE, 1 is easily subtracted from V1 by attachment of a 1 Volt AC generator to the V1 node. The voltage at node 11 below is S11 in both magnitude and phase.

S21, the forward scattering parameter, is defined as S21=b2/a1. Using equations 1 and 4 , this becomes

$$
\mathrm{S} 21=(\mathrm{V} 2-\mathrm{I} 2 * \mathrm{Z} 0) /(\mathrm{V} 1+\mathrm{I} 1 * \mathrm{Z} 0) \quad \text { (Eq. 11) }
$$

S21 is defined by Eq. 11 for the case when there is no reflection from the load, setting a2 $=0$. This produces I2 $=-\mathrm{V} 2 / \mathrm{Z} 0$, and Eq. 11 reduces to

$$
\begin{equation*}
\mathrm{S} 21=\left(2^{*} \mathrm{~V} 2\right) /(\mathrm{V} 1+\mathrm{Z} 0+\mathrm{I} 1) \tag{Eq.12}
\end{equation*}
$$

Consider our special case for a 2 volt driving generator. I1, the input current, is related to the input voltage, $\mathrm{I} 1=\mathrm{V} 1$ / Z1. Substitution into Eq. 12 yields

$$
\begin{equation*}
\mathrm{S} 21=(2 * \mathrm{~V} 2 / \mathrm{V} 1) /(1+\mathrm{Z} 0 / \mathrm{Z} 1) \tag{Eq.13}
\end{equation*}
$$

Equation 9 relates Z 1 to V 1 ; substitution simplifies to the almost trivial result that

$$
\begin{equation*}
\mathrm{S} 21=\mathrm{V} 2 \tag{Eq.14}
\end{equation*}
$$

Hence, S21 and S11 are calculated in SPICE from

S12 and S22 are calculated with similar ease with

