

PARAMETERS:	
RA	
RB	2.2 K
RC	1.5 K
RD	3 K
RE	7.75 K
RF	3.2 K
RG	1.5 K
RH	3.4 K
RJ	6 K
RK	30 K

NOMINAL MC1530 SCHEMATIC

IF BOTH INPUTS ARE TIED TO GROUND THE CIRCUIT REDUCES TO:

PARAMETERS:	
RA	2.2 K
RB	1.5 K
RC	3 K
RD	7.75 K
RE	3.2 K
RF	1.5 K
RG	3.4 K
RH	6 K
RJ	5 K
RK	30 K

COMMON MODE MODEL
(Paralleled Devices Eliminated,
Q7 Current Proportioned)

$\mathrm{I} 1=\left(\mathrm{VEE}-2^{*} \mathrm{VBE}\right) /(\mathrm{RB}+\mathrm{RE})$
$\mathrm{V} 1+\mathrm{VEE}=\mathrm{I} 1 * \mathrm{RB}+2^{*} \mathrm{VBE}$
$\mathrm{I} 2=(\mathrm{I} 1 * \mathrm{RB}+\mathrm{VBE}) / \mathrm{RA}$
$\mathrm{V} 2=\mathrm{VCC}-\mathrm{I} 2 * \mathrm{RD} / 2$
$\mathrm{I} 3=(\mathrm{V} 2-\mathrm{VBE}) /(2 * \mathrm{RF})$
$\mathrm{V} 3=\mathrm{VCC}-\mathrm{I} 3^{*} \mathrm{RC}$
$\mathrm{V} 3=\mathrm{VCC}-(\mathrm{V} 2-\mathrm{VBE}) * \mathrm{RC} /(2 * \mathrm{RF})$
$\mathrm{V} 3=\mathrm{VCC}-(\mathrm{VCC}-\mathrm{I} 2 * \mathrm{RD} / 2-\mathrm{VBE}) * \mathrm{RC} /(2 * \mathrm{RF})$
Observing the schematic we can see that no more terms in VCC will be introduced as we progress through the circuit, so now would be a good time to eliminate VCC from our equations. Let's choose $2 * \mathrm{RF}=\mathrm{RC}$

Then:
$\mathrm{V} 3=\mathrm{I} 2 * \mathrm{RD} / 2+\mathrm{VBE}$
$\mathrm{V} 3=(\mathrm{I} 1 * \mathrm{RB}+\mathrm{VBE}) * \mathrm{RD} /(2 * \mathrm{RA})+\mathrm{VBE}$
$\mathrm{V} 3=\left(\left(\mathrm{VEE}-2^{*} \mathrm{VBE}\right) * \mathrm{RB} /(\mathrm{RB}+\mathrm{RE})+\mathrm{VBE}\right) * \mathrm{RD} /(2 * \mathrm{RA})+\mathrm{VBE}$
$\mathrm{I} 5=\left(\mathrm{V} 3-3^{*} \mathrm{VBE}+\mathrm{VEE}\right) / \mathrm{RH}$
$\mathrm{I} 6=(\mathrm{VOUT}-2 * \mathrm{VBE}+\mathrm{VEE}) / \mathrm{RK}$
$\mathrm{I} 4=(\mathrm{VEE}-\mathrm{VBE}) / \mathrm{RG}$
But (in the linear operating region):
$\mathrm{I} 4=\mathrm{I} 5+\mathrm{I} 6$
Thus:

```
(VEE - VBE)/RG = (V3 - 3*VBE + VEE)/RH + (VOUT - 2*VBE +VEE)/RK
(VEE - VBE)*RK/RG = RK/RH*(((VEE - 2*VBE)*RB/(RB + RE) + VBE)*RD/(2*RA) - 2*VBE +VEE) + VOUT -2*VBE + VEE
VOUT = VEE*(-1 + RK/RG - RK/RH*(RB/(RB + RE)*RD/(2*RA) + 1))
    + VBE*(-RK/RG -RK/RH*((-2*RB)/(RB + RE) + 1)*RD/(2*RA) -2) +2)
```

Substituting Values...
VOUT $=0$ (Independent of VCC, VEE and VBE, within the ratio accuracies attainable on-chip)

Analog Innovations, Inc.
824 E. Cathedral Rock Drive
Phoenix, AZ 85048-6300

DISCUSSION

The MC1530 OpAmp Chip was designed pretty much as outlined in the above analysis EXCEPT that I worked the equations backwards from the desired output voltage with some judicious application of experience. Clearly the design methodology must keep track of the allowable signal swings at various points within the circuit and an eye must be kept on maintaining a reasonable common-mode range at the input.

This OpAmp design was the fastest and had the highest gain-bandwidth product (GBW) of its day (1965). It is STILL manufactured (Lansdale bought the product rights from Motorola a few years ago).

Not obvious, but the output stage is SLIDING CLASS-A (note the 5X output devices), thus there is no crossover distortion.

Specifications:

Power	$\pm 9 \mathrm{~V}$ (absolute max), Specs at $\pm 6 \mathrm{~V}$ Bias:
I(quiescent)	$\pm 9.2 \mathrm{~mA}$ Typical
ILOAD	$\pm 10 \mathrm{~mA}$
Output	$\pm 5 \mathrm{~V}$ into 1 K
DC Gain	$>4500(73 \mathrm{~dB})$
GBW	$>10 \mathrm{MHz}$
Slew Rate	Up to 33V/ μ sec depending upon feedback configuration
VOS	$\pm 1 \mathrm{mV}$ Typical
Input Bias	$3 \mu \mathrm{~A}$ Typical (MC1530), 25nA Typical (MC1531)
Input Z	15 K Typical (MC1530), 600K Typical (MC1531)
Output Z	25Ω Typical
CM Range	$\pm 2 \mathrm{~V}$ Minimum
CMRR	75 dB Typical
PSRR	80 dB Typical

LAYOUT:

I did the layout of this chip myself, on a quadrille pad. I also cut the Rubylith to make the mask set.
A photo of the chip is on the next page...

