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Preface 

In this book I have tried to write a history 
of the intensity interferometer together with 
a brief account of the theory, practice and 
application of this new instrument to a 
classical problem in astronomy—the 
measurement of the apparent angular 
diameters of stars. Much of the scientific 
material has already appeared in print but 
it is scattered through more than twenty 
years of scientific literature. M y aim has 
been to collect it into one book and to tell 
how and why the work came to be done. 

There are at least three good reasons for 
doing this. Firstly, the intensity 
interferometer has proved to be of lively 
interest to physicists and incomprehensible 
to astronomers; there should be a single 
written account appropriate to both groups. 
Secondly, the measurements of the angular 
diameters of stars made at Narrabri 
Observatory have been widely used by 
astrophysicists and there is no other existing 
instrument capable of checking them. It is 
therefore doubly important that there should 
be a detailed account of exactly how the 
observations were made and analysed so 
that their credibility can be assessed. 
Finally, I want to preserve our experience 
so that other groups, perhaps in the Northern 
Hemisphere, will one day follow our lead. 
Those of us who have tried to build on the 
experience gained with the unsuccessful 
50 ft. stellar interferometer built at Mount 
Wilson by Hale and Pease have found that 
although there are descriptions of the 
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instrument, like so many scientific papers, 
they don't tell us all we need to know—what 
checks were made and what went wrong. 
With this in mind I hope the reader will 
excuse some of the details in this book 
which, at first sight, may seem unnecessary. 
During my life I have been fortunate to take 
part in two other scientific adventures: the 
early work on radar and the beginnings of 
radio-astronomy. Books about those 
pioneering days have always seemed to me 
to leave out the essential ingredient of such 
adventures—the sense of purpose and 
excitement which transfigures the hardest 
work and dullest routine. Telling my own 
story has made me well aware that a lifetime 
of writing scientific papers is not a good 
training for conveying that same sense of 
adventure which was felt by all who helped 
to build the stellar interferometer at Narrabn. 
If only for one moment I could take you 
into the great plains of northern New South 
Wales and show you this elegant instrument 
looking at the stars, I believe you would 
understand what is missing from my book. 
Not only was the work we did at Narrabri 
worth while in strictly scientific terms, but 
in personal terms it was exciting, exhausting 
and profoundly rewarding. 
The success of a project lasting more than 
two decades has involved the help and 
support of many people over the years. 
Much of the work described in this book 
has been done by my colleagues, D r R. Q. 
Twiss, D r J. Davis and D r L . R. Allen. 
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Others who have "done time" at Narrabri 
are Dr D . Herbison-Evans and Dr C. Hazard 
and a small galaxy of postgraduate students: 
Dr M . J. Yerbury, M r J. M . Rome, 
M r R. J. W. Lake, M r D . W. Keenan, 
Dr R. J. Webb and M r R. K . Outhred. 
M r Gifford has taken care of the maintenance 
of the Observatory for ten years, M r S. 
Owens has looked after the electronics and 
Miss V . Raymond has been throughout, 
secretary to the Department of Astronomy 
in the University of Sydney. 

The original design of the instrument owes 
much to the staff of Dunford and Elliott 
(Sheffield), Mullard Ltd. (Salford) and 
MacDonald, Wagner and Priddle (North 
Sydney). The financial support was provided 
by the Department of Scientific and 
Industrial Research (now the Science 
Research Council), the Nuclear Research 
Foundation (now the Foundation for 
Research in Physics) within the University 
of Sydney, the Office of Scientific Research 
of the United States A i r Force, the 
Australian Research Grants Committee and 
the Research Grants Committee of the 
University of Sydney. 

I am grateful to Sir Bernard Lovell for 
giving the original work at Jodrell Bank his 
support and to Professor Harry Messel who, 
as Head of the School of Physics in the 
University of Sydney, has always supported 
us with characteristic enthusiasm. Among 
our many friends overseas, I must mention 
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D r D . M . Popper of U . C . L . A . , Dr E . P. Ney 
of the University of Michigan and D r D . C. 
Morton of Princeton, all of whom have 
worked at Narrabri. 

Finally I thank my wife Heather for making 
our life in the bush so happy and for her 
help with everything described in this book 
except the mathematics. 

Narrabri Observatory R. H A N B U R Y B R O W N 
New South Wales 
Australia 

June 1973 
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/ frequency of electric current or voltage 
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wavelength A 
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G(v) mutual spectral density of two light beams (eqn. (3.12)) 
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I(S) light intensity per unit area of source 
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jc wave noise (eqn. (4.18)) 
jn shot noise (eqn. (4.19)) 
k the Boltzmann constant 
l0 coherence length of light (eqn. (3.33)) 
N, n number of counts of pulses 
N(T) r.m.s. noise or uncertainty after a time T 
n(v) number of photons per unit time, per unit area, per unit 

light bandwidth at frequency v 
R radius of star 
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(S/N) signal to noise ratio 
T, t time 
T{. effective temperature of a star 
u limb-darkening coefficient (eqn. (10.12)) 
V apparent visual magnitude of star 
V{d) fringe visibility with baseline d 
V(t) electric vector of light wave 
W{j) spectral density of electrical fluctuations 
z (§5.6) zenith angle, (§5.8) coordinate parallel to line from 

observer to source 
« quantum efficiency 
fi ratio of brightness of components of binary star 
/S0 polarization factor (eqn. (5.7)) 
T2(rf) normalized correlation factor (eqn. (5.8)) 

r ( J ) J* mutual coherence function (eqn. (3.16)) 

V<*>yi2(T) complex degree of coherence (eqn. (3.18)) 
A partial coherence factor (eqn. (5.11)) 
Am difference in brightness of components of a binary star 
Av light bandwidth 
A / electrical bandwidth 
AI intensitv fluctuation 
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8 excess noise in correlator (eqn. (5.15)) 
e fraction of correlation lost in correlator 
17 spectral density of cross-correlation frequency response 

(eqn. (5.16)) 
(•),, black-body temperature of source 
6P reciprocal effective temperature of star 
^ r n angular diameter of star, equivalent uniform disc 
9LT) true angular diameter of star (corrected for limb-darkening) 
68 angular separation between components of a binary star 
A wavelength of light 

§5.4, 5.5, 5.6 gain of first dynode of photomultiplier; 
§5.8 refractive index 

v frequency of light wave 
p(v) atmospheric transmission at frequency v 
<\ , r.m.s. uncertainty (eqn. (9.1)) in 100 s observation of 

correlation 
O - S T D standard uncertainty (eqn. (9.2)) in correlation 
T time delay 
T C resolving time 
T 0 coherence time of light (eqn. (3.33)) 
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CHAPTER 1 
the story of how and why the stellar intensity 

interferometer at Narrabri came to be built 

1.1 The Historical Problem 
I N essence, this story is about the discovery and development of a new-
technique of physical measurement, intensity interferometry, and its 
application to the specific problem of measuring the extremely small 
angles subtended at the Earth by bright stars. Although the technique 
emerged from work in the comparatively new field of radio-astronomy 
the problem is an old one in the history of astronomy which has proved 
peculiarly difficult to solve—in fact it is not completely solved yet. 
There have been many attempts in the past to find the apparent angular 
diameter of the stars and it is worth while to recall three which illustrate 
some of the difficulties that the problem holds. 

The first was an experimental attack made, characteristically, by 
Galileo. He suspended a fine cord vertically and measured the distance 
at which he had to stand from the cord so that it just occulted the image 
of the first magnitude star Vega. A brief account of the experiment is 
given in his Dialogue concerning the Two Chief World Systems and it is 
interesting to read how carefully it was done; he even allowed for the 
u " sergence of light in his eye. Galileo reached the conclusion that 
the angular diameter of Vega is 5 seconds of arc, which was a significant 
advance on the currently accepted value of about 2 minutes of arc and 
he used this measurement to considerable effect in his trenchant 
criticism of the objections to the Copernican Theory. When the 
angular diameter of Vega was measured again (about 350 years later at 
Narrabri), it was found to be about 3 x 10~ 3 seconds of arc; Galileo's 
result was roughly 1500 times too large and one wonders why. A t 
first sight, his experiment looks very simple to do but when you work 
out the actual details—the distance from the cord, the angular motion 
of Vega, etc.—you find that the observation must have been carried 
out skilfully to get a result even as small as 5 seconds of arc. The 
actual value measured by Galileo was, presumably, not a measurement 
of the size of Vega but a measurement of the local angular scintillation 
due to the atmosphere. 

A theoretical attempt to estimate the angular size of a first magnitude 
star was made by Newton. He argued that if one is prepared to assume 
that the Sun is a body similar to the fixed stars (an assumption which is 
still surprising to many people) and if it were to be removed to a distance 
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at which it appears as a first magnitude star, then its angular diameter 
would be about 2 x 10~ 3 seconds of arc. Th is estimate is about two-
thirds of the value we have now established for Vega, so we must regard 
Newton's effort to solve the problem as approaching much closer to 
the right answer. 

The third attempt of importance was the first successful measure
ment of a star. It was made by Michelson and Pease on 13 December 
1920, using the 20ft stellar interferometer at Mount Wi l son ; they 
found the angular diameter of the supergiant star Betelgeuse to be 
47 x 10~ 3 seconds of arc. Although six stars, all cool giants or super-
giants, were measured with that instrument, all subsequent efforts to 
extend the work to other stars have failed. For example, in 1930, 
F . G . Pease built a larger version of Michelson's interferometer with a 
50 ft beam but could not make it give reliable results and the work was 
abandoned in 1937. 

This slow progress in solving a classical problem is not surprising 
when you appreciate the technical difficulties involved. T o begin 
with, the angles subtended by stars at the Earth are extremely small ; 
for example, to find the angular size of even a few of the hot stars one 
must measure angles of the order of 10 ~4 seconds of arc. This means 
that any instrument that one uses must be capable of working with 
baselines several hundred metres long. A second complication is 
that turbulence in the Earth's atmosphere distorts the light waves 
reaching us from the stars to such an extent that, even when viewed 
in a large telescope, the image of a star is blurred into a shapeless patch 
which is enormous compared with the true angular size of the star and 
is seldom less than 1 second of arc across. 

These two major difficulties have for many years arrested the 
development of Michelson's interferometer and stood in the way of 
further progress towards finding the angular size of the stars. 

1.2 The First Intensity Interferometer 
Both problems—the need for long baselines and the effects of 

atmospheric turbulence—were solved by the invention or, if you 
prefer the word, the discovery of intensity interferometry. Quite 
simply, I thought of the idea late one night in 1949. I was trying to 
design a radio interferometer which would solve the intriguing problem 
of measuring the angular sizes of the two most prominent radio sources 
in the sky, Cygnus A and Cassiopeia A . A t that time we knew only 
that their angular sizes could not be much greater than a few minutes 
of arc but we had no evidence as to how small they might be. If, as 
some people thought, they proved to be as small as the visible stars, 
then at metre wavelengths we should need two stations at the ends of 
the Earth. Was it feasible to build a radio interferometer with a 
baseline that could be extended if necessary from tens to hundreds, or 
perhaps thousands, of kilometres ? The immediate technical difficulty 
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in adapting conventional designs was to provide a coherent oscillator 
at the two distant points, and I started to wonder i f this was really 
necessary. Could one perhaps compare the radio waves received at 
two points by some other means ? As an example, I imagined a 
simple detector which demodulated waves from the source and 
displayed them as the usual noise which one sees on a cathode-ray 
oscilloscope. If one could take simultaneous photographs of the 
noise at two stations, would the two pictures look the same ? This 
question led directly to the idea of the correlation of intensity fluctua
tions and to the principle of intensity interferometry. 

A few days later, having convinced myself that the idea, unlike most 
late-night discoveries, was sound, I sought the help of Richard Twiss 
to put the whole scheme on a formal mathematical basis. After some 
characteristic pooh-poohing based, I remember, on a minor mistake 
in one of his integrals, Richard seized on the idea with alacrity and 
produced, on sheet after sheet of paper, a rigorous and quantitative 
theory of the radio intensity interferometer which he sent to me in 
instalments through the post (Hanbury Brown and Twiss, 1954). 
Before long we were ready to design a practical system. 

Our first step was to join with R. C. Jennison in building at Jodrell 
Bank a radio intensity interferometer at a frequency of 125 M H z and 
to test it by measuring the angular diameter of the quiet Sun. After 
some preliminary anxieties, due to the fact that the two halves of the 
antenna were connected the wrong way round, radiation was received 
from the Sun as it passed through the aerial beam and much to our 
relief the predicted correlation was recorded. The scheme worked 
exactly as we had hoped. 

The next step, again with R. C. Jennison joined by M . K . Das Gupta, 
was to apply this interferometer to the measurement of the two radio 
sources in Cygnus and Cassiopeia. Since we had no idea how long 
the baseline should be, we limited the bandwidth of the correlated 
post-detector noise to only 2000 H z . We proposed to transmit this 
noise from one station to the other by telephone line or radio link. If 
very long baselines proved to be necessary, then the bandwidth would 
have to be even narrower, the signals being recorded at the two stations 
separately; the records would have to be synchronized by some radio 
signal and subsequently brought together and correlated in a later 
operation. We decided to start by transmitting the correlated noise 
as a modulation on a radio l ink; this seemed to be more promising than 
battling with the rural telephone network in that part of Cheshire. 
In 1952 the first observations of both sources were made with the two 
stations of the interferometer close together and the theoretical correla
tion was observed. Then one station, complete with 500 square 
metres of antenna, was loaded on to a lorry, and set up in a farmyard 
about a mile from Jodrell Bank. Again all went well, and in subse
quent measurements the remote station worked its way across Cheshire, 
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farm by farm. T o our great satisfaction the whole thing worked 
perfectly and the measurements were steady and repeatable; but to 
our disappointment it was all over much too quickly. Both Cassiopeia 
A and Cygnus A proved to be so large that they were resolved with 
baselines of only a few kilometres, making our elaborate preparations 
for very long baselines unnecessary; we had used a sledge-hammer to 
crack a nut. We could have done the whole job by making minor 
alterations to a conventional interferometer, which would have been 
comparatively easy to develop and would have required a much smaller 
mobile antenna array. Nevertheless, the actual measurements on 
the two radio sources were reliable and, at that time, new and important 
(Hanbury Brown, Jennison and Das Gupta, 1952); they were confirmed 
by measurements with more conventional interferometers in Cambridge 
and Sydney and they have stood the test of time. 

At the beginning of this programme we had thought that the sole 
advantage of an intensity interferometer, compared with the radio 
version of Michelson's interferometer, was that it did not require 
mutually coherent local oscillators at the separated stations and was 
therefore peculiarly suitable for extremely long baselines. (At that 
time the highly stable oscillators with rubidium or caesium, which are 
now used for long baselines, were not invented.) However, as we 
watched our interferometer at work, we noticed that when the radio 
sources were scintillating violently, due to ionospheric irregularities, 
the measurements of correlation were not significantly affected. 
Richard Twiss investigated the theory of this surprising effect and 
confirmed that it was to be expected. We had overlooked one of the 
principal features of an intensity interferometer—the fact that it can 
be made to work through a turbulent medium. 

It was this last result which prompted us to enquire whether an 
intensity interferometer could be made to work at the wavelength of 
light. If we could make an optical interferometer with the very long 
baselines necessary to resolve main-sequence stars and with the ability 
to work reliably through the Earth's atmosphere, then we could 
overcome the two main obstacles which had prevented the develop
ment of Michelson's work. We decided to look into the theory of an 
intensity interferometer for light waves. 

1.3 The Theory of an Intensity Interferometer for Light Waves 
In principle, the theory is the same for all wavelengths; however, 

in terms of practical formulae the domains of radio and light are quite 
distinct. Radio engineers, before the advent of masers, thought of 
radio waves as waves and not as a shower of photons. A way of 
picturing this difference is to say that because the energy of the radio 
photon is so small and there are so many photons, the energy comes 
smoothly and not in bursts. The fluctuations in the output of a 
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simple square-law detector, exposed to these waves through an antenna, 
can therefore be calculated in terms of classical waves. We say that 
the fluctuations in its output are principally due to 'wave noise' and 
not to 'photon noise'. By contrast, at optical wavelengths, the energy 
of the individual photon is much greater and there are relatively few 
photons, so that we can no longer neglect the fact that the energy 
comes in bursts. In this case the situation is reversed ; the fluctuations 
in the output of the detector are due principally to 'photon noise' and 
not 'wave noise'. Th is matter is expressed more formally in chapter 4. 

After a good deal of argument the formulae for an optical interfero
meter were produced by Richard Twiss. Disappointingly, they 
seemed to show that an optical intensity interferometer would be 
absurdly expensive. T o measure a first magnitude star we should 
need two telescopes at least 2-5 m in diameter and to make matters 
worse, one of these must be mobile. Clearly such a project was 
impracticable and reluctantly we let the matter drop. 

It took us six months to realize that although we should certainly 
need two very large telescopes, they could be extremely crude by 
astronomical standards. Thei r function would simply be to collect the 
light from the star like rain in a bucket and pour it on to the detector; 
there was no need to form a conventional image. In practice this 
meant that the whole problem was transformed into one of reasonable 
cost since our telescopes need only be like the paraboloids used for 
radio-astronomy, but with light-reflecting surfaces. The necessary 
precision of these surfaces would be governed by the maximum 
permissible field of view and not, as at radio wavelengths, by the 
beamwidth; for bright stars a field of view of several minutes of arc 
would be tolerable and this could be achieved with the sort of structures 
which were used by radio-astronomers for microwaves. 

Wi th renewed enthusiasm we returned to establish the detailed 
theory of an optical interferometer, and immediately ran into a barrage 
of criticism. 

1.4 Opposition to the Theory 
Our original theory was clearly correct at radio wavelengths but 

when it came to light waves there were one or two lingering doubts in 
our own minds and several firmly entrenched doubts in the minds of 
others. The trouble of course was due to worrying about photons. 
As I have already pointed out, radio engineers in those days looked on 
radio waves as being simply waves and our theory of the radio intensity 
interferometer was accepted without question. But when we came 
to deal with physicists, all sorts of queries were raised. One group of 
objections was concerned with the validity of our semi-classical model 
of photoelectric emission. We had assumed that the probability of 
emission of a photoelectron is proportional to the instantaneous square 
of the electric vector of the incident light wave treated classically. 
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Further, we had assumed that there is no significant delay in the 
photoelectric process and that in the output current all the components 
of the envelope of light, at least up to 100 M H z , would be present with 
their correct phases and amplitudes. A t that time there was no 
sufficiently detailed quantum-mechanical treatment of photoelectric 
emission and we justified our semi-classical picture on general 
theoretical grounds and by appeal to an experiment- performed by 
Forrester, Gudmundsen and Johnson (1955). In their experiment, 
an isotope lamp was placed in a magnetic field and the light illuminated a 
phototube. The frequency components of the light, due to Zeeman 
splitting, beat with each other in the photoelectric detector and their 
difference frequency ( ~ 1 0 1 0 H z ) was detected in the photocurrent. 
Th is experiment demonstrated the formation of very high beat-
frequencies in photoelectric detection and indicated that any delays in 
the process are less than 10~ 1 0 s. 

One particular doubt about the reliability of our model is worth 
recalling because the solution proved to be instructive. It was pointed 
out by Fellgett (1957) and also by Clark Jones, in a private letter, that 
our semi-classical analysis gave an apparently incorrect result for the 
fluctuations in the temperature of a grey body in thermal equilibrium 
with an isothermal enclosure. The established formula, based on 
thermodynamics, gave the fluctuations Am in the number of photons m 
exchanged by the body in each small frequency range as 

Arii = m[\ + nlN] (1.1) 

where n is the mean density of photons in the enclosure and N is the 
mean density of Bose cells. The first term in the brackets corresponds 
to the fluctuations in a classical assembly of particles, and the second 
term to the 'wave noise'. Appl ied to the same problem our analysis 
gave 

A m 2 = w [ l + €n/JV] (1.2) 

where e is the emissivity of the body. It therefore agreed with the 
established formula for the case of a black body (e= l ) , but gave a 
lower 'wave noise' for a grey body. This problem worried us for some 
t ime; we felt certain that the 'thermodynamic' formula was wrong but 
we could not see why. In a first unsuccessful attempt to answer the 
objection we published some rather misguided criticisms of the 
thermodynamic argument (Hanbury Brown and Twiss, 1957 a). The 
question was finally cleared up, largely due to Richard Twiss \\ ho 
published a joint note with Fellgett and Clark Jones (Fellgett, Clark 
Jones and Twiss, 1959), giving an explanation of the discrepancy. 
Briefly, the 'thermodynamic' argument assumes that the total fluctua
tions in the temperature of the body can be treated as the sum of two 
independent streams of radiation, one absorbed and one emitted. Th is 
is incorrect because the incident, emitted, and reflected streams of 
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radiation interact; when this interaction is taken into account the 
formulae can be reconciled. 

Another stream of objections about photons were both instructive 
and entertaining. Our whole argument was based on the idea that the 
fluctuations in the outputs of two photoelectric detectors must be 
correlated when they are exposed to a plane wave of light. We had 
shown that this must be so by a semi-classical analysis in which light 
is treated as a classical wave and in this picture there is no need to 
worrv about photons—the quantization is introduced by the discrete 
energy levels in the detector. However, if one must think of light in 
terms of photons then, if the two pictures are to give the same result, 
one must accept that the times of arrival of these photons at the two 
separated detectors are correlated—they tend to arrive in pairs. Now, 
to a surprising number of people, this idea seemed not only heretical 
but patently absurd and they told us so in person, by letter, in publica
tions, and by actually doing experiments which claimed to show that 
we were wrong. A t the most basic level they asked how, i f photons 
are emitted at random in a thermal source, can they appear in pairs at 
two detectors ? A t a more sophisticated level the enraged physicist 
would brandish some sacred text, usually by Heitler, and point out 
that the number n of quanta in a beam of radiation and its phase <j> 
are represented by non-commuting operators and that our analysis 
was invalidated by the uncertainty relation 

8 » . 8 0 » 1 . (1.3) 

We tried as best we could to answer all these objections and to 
quieten people down. We were certainly interested in seeking the 
truth but in raising money to build an interferometer it was desirable 
th.it our proposals should be widely regarded as sound. These diffi
culties about photons troubled physicists who had been brought up on 
particles and had not fully appreciated that the concept of a photon is 
not a complete picture of light. Thus many people are reluctant to 
accept the notion that a particular photon cannot be regarded as having 
identity from emission to absorption. These objections can, in fact, 
be answered straight out of text-books and we developed some con
siderable skill in expounding the orthodox paradoxical nature of light, 
or, if you like, explaining the incomprehensible —an activity closely, 
and interestingly, analogous to preaching the Athanasian Creed. In 
answer to the more sophisticated objection that our proposal was 
inconsistent with the uncertainty relation in equation (1.3) we pointed 
out that we were proposing to measure only the relative phase (<f>i — <f>2) 
between two beams of radiation; the total energy of two beams 
(Mj + n2) and their relative phase (</>x — <f>2) can be represented by com
muting operators and can be represented classically. 

Finally, there were the objections based on laboratory experiments 
which claimed to show that photons are not correlated at two separate 
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detectors. Here we were on sure ground because we had already done 
our own careful laboratory test of the principle. In 1955, I had 
borrowed the dark-room which housed the spectro-heliograph at 
Jodrell Bank and set up our first optical interferometer. A n artificial 
star was formed by focusing the brightest part of a high-pressure 
mercury arc on to a pinhole. The light from this pinhole was then 
divided into two beams, by a half-aluminized mirror, to illuminate two 
photomultipliers mounted so that their photocathodes could be optically 
superimposed or separated by a variable distance as seen from the 
pinhole. The whole system simulated the measurement by two 
detectors on the ground of a star with a surface temperature of about 
8000 K . After the usual troubles with the equipment we observed the 
expected correlation and successfully measured it as a function of the 
separation of the two phototubes. The correlation was in reasonable 
agreement with theory at all separations of the detectors and this result 
was published (Hanbury Brown and Twiss, 1956 a) in January 1956. 

W e were therefore able to face with confidence objections based on 
two independent experiments claiming to show that there is no correla
tion between photons in coherent light beams. The first was per
formed in Budapest by Adam, Janossy and Varga (1955) and was 
published at the same time as our own test was being made. In the 
introduction to their paper they stated that, according to quantum 
theory, the pulses produced in two separate detectors illuminated bv 
coherent light should be independent of one another. Their aim was 
"to investigate the validity of this prediction of quantum theory". 
They illuminated two photomultipliers with coherent light from a 
single source and also with incoherent light from separate sources, 
and they counted the coincidences of the pulses produced by individual 
photons in the two phototubes. In an observation lasting 10 hours 
they found no significant correlation between the arrival times of 
photons and they claimed that this showed that " i n agreement with 
quantum theory, the photons of two coherent light beams are indepen
dent of each other or at least that the biggest part of such photons are 
independent of each other." Since the results of this experiment 
were welcomed by our critics as evidence that an intensity interfero
meter was fundamentally unsound, we took a closer look at these claims. 
It was at once obvious, from a quantitative analysis of the parameters 
of their experiment—light intensity, resolving time, etc.—that there 
was no hope whatever of observing correlation within 10 hours m of 
testing the predictions of quantum theory. In reply we published a 
brief note (Hanbury Brown and Twiss, 1956 c) drawing attention to 
the fact that in order to observe a significant correlation (three tunes 
r.m.s. noise) Adam et al. would have had to observe for 10" years— 
somewhat longer than the age of the Earth. 

The second experimental objection was made in 1956 at the Univer
sity of Western Ontario by Brannen and Ferguson (1956) just after the 
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publication of our own laboratory work. They designed their optical 
system to resemble as far as possible the one we had used at Jodrell 
Bank. T w o photomultipliers were illuminated by coherent light from 
a high-pressure mercury arc via a half-silvered mirror and the outputs 
of the two phototubes were taken, not to a linear multiplier but to a 
coincidence counter. They concluded that "there is no correlation 
(less than 0-01 per cent) between photons in coherent light rays". 
They added that " i f such a correlation did exist it would call for a 
major revision of some fundamental concepts in quantum mechanics". 
Again, we analysed these conclusions and found that the parameters, 
as before, were hopelessly inadequate to allow the detection of correla
tion between photons within a reasonable time. In this case the 
essential point is that in order to achieve a practical signal-to-noise 
ratio with a coincidence counter one needs an intense source of light 
with an extremely narrow bandwidth, and this they did not have. We 
published a short note (Hanbury Brown and Twiss, 1956 c) showing 
that it would have taken Brannen and Ferguson 1000 years to observe 
a significant correlation. 

Both these experiments were beyond reproach from an experimental 
point of view, but since they had been planned without an adequate 
theoretical foundation they were far too insensitive to be of any 
significant use. Nevertheless, they did provide our opponents with 
ammunition. 

1.5 A Pilot Model of an Optical Stellar Interferometer 
Bloody but unbowed we were ready to build a pilot model of a 

stellar intensity interferometer which would measure the brightest 
si in the sky Sirius. This was intended to demonstrate that the 
nut hod actually worked, to verify that the measurements could be 
made in the presence of atmospheric scintillation and to provide us 
with practical experience of working on a star. T o save time and 
money we used two anti-aircraft searchlights of the largest type which I 
borrowed from the A r m y ; we removed their arc lamps, substituted 
photomultipliers and mounted them on railway sleepers in a field at 
Jodrell Bank. The correlator had to be built from scratch. Details 
of this experiment are described in chapter 7. It proved peculiarly 
difficult to do because Sirius only reaches a maximum elevation of 
about 20° at Jodrell Bank, and it took the whole winter (1955-1956) to 
accumulate 18 hours of satisfactory observations. T o achieve even 
this short exposure it was necessary to have the equipment standing 
by in full working order on 60 nights. Nevertheless, the experiment 
was a success; the apparatus was crude, but worked well enough. It 
gave a reasonable value for the angular diameter of Sirius (Hanbury 
Brown and Twiss, 1956 b, 1958 b ) ; the measurements were certainly 
made through a scintillating atmosphere, and we learned some valuable 
practical lessons. For example, we found that it was essential to 
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screen the leads from the phototubes to the correlator with great care 
in order to avoid the pick-up of radio signals; we discovered that it 
was essential to heat exposed mirrors to avoid the formation of dew 
and we realized the importance of making measurements in mono
chromatic light in order to simplify the analysis of the data. 

1.6 Two more Laboratory Experiments 
We were now certain that a full-scale stellar intensity interferometer 

could be built and that it would be a practical and valuable instrument. 
However, to make doubly sure, we thought it worth while to repeat our 
original laboratory experiment with the better phototubes which had 
now become available and, also, in an entirely new experiment to 
demonstrate that correlation between individual photons could be 
observed with coincidence counters. The first of these experiments 
is described in chapter 6 and gave us what we wanted—a more precise 
verification of the theory. The second experiment (see chapter 6) 
was, of course, done in response to the many objections raised by 
Adam et al. and Brannen and Ferguson. In both our previous 
laboratory experiments we had used such a large flux of photons that 
the output pulses overlapped in the phototubes to produce random 
noise and the arrival of individual photons could not be distinguished. 
In order to get an adequate signal-to-noise ratio in a coincidence-
counting experiment in which individual photons can be counted, 
one needs an intense and narrow-band source of light and we therefore 
built an entirely new equipment using a mercury isotope lamp. This 
type of lamp was temporarily difficult to obtain in England, and so the 
experiment was performed in Sydney by Twiss and Litt le in 1957 
(Twiss, Little and Hanbury Brown, 1957). They used an electrode-
less radio-frequency discharge in mercury-198 vapour as a source of 
light, 1P21 phototubes and a coincidence counter with the resolving 
time of 3-5 x 10 9 s. They compared the coincidences between 
photons arriving at these two phototubes with the coherent anil in
coherent illumination. In a test lasting 8 hours they found that, w ith 
coherent illumination, the number of coincidences was increased by 
1-93 + 0-17 (p.e.) per cent, which was in satisfactory agreement with 
the theoretical estimate of 2-07 per cent. Thus their experiment 
confirmed the correlation between photons in a striking manner. 
(Details are given in chapter 6.) A similar experiment with a similar 
result was carried out later by Rebka and Pound (1957) at Harvard. 

1.7 Financing and Building the Narrabri Stellar Interferometer 
The way was now clear to plan a practical stellar intensity interfero

meter which would measure a significant number of stars. We had 
worked out the theory and defended it successfully against all comers; 
we had also demonstrated that it was correct by three separate laboratory 
experiments and one measurement of a star (Hanbury Brown and 
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Twiss, 1956 a, b, 1957 a, b, 1958 a, b). T o measure a reasonable 
number of stars, we knew that we should need to build an instrument 
with two reflectors roughly 7 m in diameter and with a maximum 
baseline of about 200 m. For a novel instrument this seemed rather 
an ambitious programme so I sought the advice of Professor P. M . S. 
Blackett, later L o r d Blackett. He already knew about the work 
because, during its early stages, he was Langworthy Professor of 
Physics at Manchester University but by this time he had moved to 
Imperial College and was engaged in energizing the financing of 
research by the Department of Scientific and Industrial Research 
(D.S . I .R . ) . He had a great gift for encouragement once he was 
persuaded that a proposal was worth while, but he was not easy to 
convince. Nevertheless, I did convince him and he lent his support 
to the project, suggesting that I submit a proposal to the D . S . I . R . 
We now engaged in the money-raising game. 

In these first discussions in 1956, I had in mind an instrument 
costing considerably less than £ 5 0 000 but in 1957, when we came to 
look more closely at the cost, we realized that this would not be enough. 
It seemed a lot to ask for, unless we had a partner to share the cost. 
Richard Twiss found the answer. He was working at the time in 
Sydney and discussed our proposal with Professor Harry Messel who 
was busy revitalizing the research of the moribund School of Physics 
at the University of Sydney. Harry Messel came forward with a 
handsome offer to share the cost—even, if necessary, to bear the whole 
cost. A t the same time I approached my friend Herman Lindars of 
Dunford and Elliott in Sheffield ; he had been responsible for designing 
anil making the control desk and computer of the 250 ft radio telescope 
at Jodrell Bank and was interested in novel instruments. I asked him 
to help me to study the feasibility of the proposed instrument and to 
make a rough estimate of its cost. Herman Lindars generously gave 
his own time and that of his firm. 

We kicked the ball off in February 1958 with the first proposal to the 
D . S . I . R . for an optical stellar intensity interferometer capable of 
measuring stars brighter than magnitude + 2-5; we pointed out that 
there were about 65 stars over the whole sky that such an instrument 
could measure. It was to be a joint project between the Universities 
of Manchester and Sydney, with the instrument being built largely in 
the U . K . but installed and operated in Australia. The University of 
Sydney undertook to meet all the costs in Australia including shipping, 
installation and the running costs for at least five years; furthermore, 
in the event of no funds being available from the U . K . they offered to 
contribute up to £ 4 0 000 towards the capital cost of the instrument 
itself. A t that time we estimated that the total cost would be £ 7 0 000 
and we asked the D . S . I . R . to contribute one-half. 

O n the whole, our proposal was well received, but one of the referees 
pointed out that, "what M r Hanbury Brown is proposing is two 
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200-inch telescopes movable on railway tracks and accurately steerable 
so as to follow the motions of a star for hours at a t ime". He maintained 
that it was absurd to suppose that we could produce such an elaborate 
set-up for the sum suggested, particularly when one remembered that 
the 200 in Hale telescope cost several million dollars. In the light 
of this opinion, the D .S . I .R . , very reasonably, made a grant of £5000 
for a design study leading to more precise estimates. Th is study was 
carried out by Dunford and Elliott and by the research laboratories of 
Mi l l i a rd . Of course, the estimated cost rose, until it reached £140 000. 
A second proposal to D . S . I . R . in M a y 1959, asking them to contribute 
half, produced a grant of £75 000 in January 1960. 

We now set to work to get the instrument built. This proved to be 
unnecessarily frustrating. We were working in the shadow cast by 
the much publicized financial difficulties of the large radio telescope 
at Jodrell Bank, and we had to bear the full brunt of the C i v i l Service's 
attempts to prevent another serious over-expenditure. Her Majesty's 
Treasury is always will ing to spend a great deal of time, money and 
talk on saving money—provided only that the sum involved is not very 
large. Judging from many of the schemes, particularly for new types 
of aircraft, which have been financed since the last war, there is evidently 
a threshold above which their resistance to expenditure decreases; 
presumably this threshold, rather like energy levels in an atom, 
corresponds to a change in the administrative level at which the 
decision is taken. Anyway, our request for £75 000 was well below 
such a threshold and we had to negotiate the maximum possible 
number of administrative hurdles. A 'representative' supervisory 
committee was set up to administer the grant; every item had to be 
put out to competitive tender and discussed by the committee, which 
then had to justify their choice of tender to the D . S . I . R . ; approval of 
the acceptance of tenders had to be given by the D . S . I . R . and so on 
and so on. Of course, such a rigmarole is laudable from the point of 
view of guarding public money, but in practice it wasted a lot of time of 
busy people without really sharing the responsibility. The basic 
responsibility in building a novel instrument is simply that the instru
ment, when built, shall fulfil its declared purpose; this cannot be 
shared by any supervisory committee and I formed the opinion that 
the function of financial control could have been executed more 
efficiently by a single responsible officer. 

T o cut a Jong and tedious story short, we did succeed in getting the 
component parts of the instrument built, and paid for; the steelwork 
was made by J . W . Ell is in Newcastle, the gears by Alfred Wiseman in 
Birmingham, the light-alloy framework of the reflectors by Saunders-
Roe in Beaumaris and the computer and control system by Lintlars 
Automation in Sheffield. Mullards undertook the correlator, and two 
other difficult components—the electro-hydraulic motors and the 
glass mirrors were made by Officine Galileo in Florence. It is 
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interesting to note that the electro-hydraulic motors, developed 
originally for driving guns, turned out to be extremely robust; on the 
other hand, the glass mirrors, having no precedent, gave us a lot of 
trouble. 

Their design emerged only after much trial and error. A t first I 
thought we might use glass mirrors made in the same way as some 
searchlights, by pressing a heated glass blank over a former. But 
samples made by this process were not good enough. We also had 
samples made by spinning aluminium but, again, they were not nearly 
good enough. We rejected plastic mirrors on the grounds that there 
was insufficient evidence about their mechanical stability and we 
finally decided on glass figured by conventional methods. We planned 
to use a mosaic of hexagonal mirrors with spherical curvature each 
roughly 40 cm across and we sought samples and quotations from 
several firms in U . K . , Germany, France and Italy. I tested these 
samples in the underground concrete tunnel which connects the control 
building at Jodrell Bank with the 250 ft radio telescope. They were 
all of adequate optical performance but the price varied by a factor of 
ten. Eventually we chose those from Officinc Galileo in Florence and 
plated an order for 540 glass mirrors all with the same nominal curvature 
and each at a cost of about £20 . At that time it was a disappointment 
to me that, in order to avoid the expense of figuring two surfaces, these 
mirrors had to be front-aluminized and coated with silicon dioxide; 
I thought that they would not stand up to years of exposure out of doors. 
In the event, however, my fears were unfounded; after ten years of 
constant use the mirrors at Narrabri look almost as good as new. 

A l l the component parts of the instrument except the correlator 
were completed by August 1961. T ime and money prevented a 
proper dress rehearsal of fitting them all together before export but the 
two reflector frameworks were assembled among a lot of boats on the 
slipway of Saunders-Roe at Beaumaris and given a few hasty tests. 
After some urgent last-minute modifications, conducted almost 
entirely in pouring rain, they were put into crates and shipped to sunny 
Australia. We had to simulate the weight of the mirrors in these 
tests by attaching pieces of lead to the framework because we were 
unable to import the mirrors themselves from Italy without paying 
Customs Duty, and no-one had the time to argue the case with the 
appropriate department. The mirrors were sent direct to Australia 
from Italy where, as it turned out, we had a worse fight with the 
Australian Customs. They demanded payment on the grounds that 
the British Custom authorities had advised them that the mirrors could 
have been made in U . K . ; Italian mirrors were therefore dutiable under 
Commonwealth agreements. After a good deal of agitation on our 
part they let the mirrors through without payment so that we could 
get on with the job of their installation, but it took us a year to convince 
them that we should not pay them any money. 

1 3 



1.8 Installation of the Interferometer at Narrabri 
The whole interferometer, minus the correlator, arrived in Narrabri 

in January 1962 and I had my first view of the site which had been 
chosen by Richard Twiss and Harry Messel. Narrabri is a small 
country town on the River Namoi in northern New South Wales about 
340 miles from Sydney by road. The Observatory is 12 miles from 
town, 15 from the airport, and is sited by kind permission of the owners 
on a property of about 3000 acres. L ike most of the area, the site 
itself is about 600 ft above sea-level, flat, with few trees but with a 
magnificent view of the Nandewar hills which rise to 5000 ft about 
20 miles to the east. The climate is beautiful in winter but too hot 
in summer. The average annual rainfall is 24 in . but the rain comes 
irregularly and in very large doses. About 60 per cent of all nights 
are clear and the moonless sky is dark; for more than half the time the 
extinction is low but on several occasions during the last ten years our 
work has been seriously hampered by dust. 

When I arrived early in 1962 the construction of the site was already 
completed under the supervision of Malco lm Nick l in of MacDonald , 
Wagner & Priddle; this had been negotiated by Cyr i l Hazard, one of 
my colleagues at Jodrell Bank who had earlier transferred to Sydney 
University in 1961. Towards the end of 1961 he was joined by John 
Davis, also from Jodrell Bank. The site consisted of a circular track, 
188 m in diameter, a central mast to carry the cables, an enormous and 
expensive garage for the reflectors, a control building (air-conditioned) 
and three small prefabricated houses for the observers. The indige
nous wire fencing of the outback protected it from sheep, cattle, 
kangaroos and emus, and it was connected to civilization by several 
miles of telephone and electricity supply lines and an ungravelled dirt 
road. A l l that remained to do was for the three of us to put the bits 
of the actual interferometer together with the help of a small team of 
engineers from Sydney, two engineers from Sheffield and the local 
know-how of Graham Gifford, our indispensable caretaker-mechanic. 

This proved to be an exceptionally trying experience which I would 
not care to repeat. The whole operation had to be done as fast as 
possible because we could not afford to keep the engineers for long. 
The weather did not help; heavy rain reduced the surrounding black 
soil to a quagmire which could only be negotiated in a Land-Rover 
and between the storms it was extremely hot with the famous Australian 
Bush F ly out in force. T o make matters worse, the instrument had 
never been put together before in its entirety and it is not easy to make 
vital modifications when the nearest workshop is over 100 miles away. 
One rather comic example of our troubles was that the two reflectors 
would not fit into their splendid and costly garage; the dimensions of the 
building had been specified for reflectors standing straight on their 
tracks but the inevitable curvature of the rails rotated them slightly 
and their corners stuck out of the doors. Fortunately we were able 
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Other troubles were not so easily solved. One of the worst of these 
concerned the mirrors which had arrived from Florence, beautifully 
packed and coated with a protective layer of plastic. A small party, 
which consisted of every able-bodied person within sight, spent two 
months assembling the mounts and putting the mirrors on the frame
work of the reflectors. When it was all done we celebrated the occasion 
by stripping the protective coat off the mirrors. In 140 cases the 
plastic coating brought some of the mirror surface with it, damaging 
it so badly that the mirrors were ruined. Very sadly we spent another 
month dismantling the 100 worst cases and returned them to Florence 
for re-coating. The trouble was probably due to the extreme heat, 
as the temperatures were well over 100°F for a good deal of the time. 

As fast as we cured one trouble another appeared. The reflectors, 
finally complete with all their mirrors, were ready for test in October 
1962. We pointed them horizontally at a distant gum tree on which 
we had mounted a lamp and examined the 'image' on a sheet of ground 
glass. Each of the 252 mirrors on each reflector was then adjusted 
individually to give a circular patch of light about 13 mm in diameter. 
We then tracked Jupiter over a wide range of elevations and photo
graphed the 'image' in a remotely controlled camera at the focus. 
T o our disappointment the photographs showed that in both reflectors 
the size and shape of the image varied greatly with elevation; the 
circular patch deformed into an ellipse with its major axis in the 
azimuthal plane. A t 70° elevation the major axis of this ellipse 
increased to no less than 60 mm. After a good deal of anxious research 
the cause of this trouble was traced to a bending of the main steel tube 
which carries the framework on which the mirrors are mounted. As 
nothing simple could be done to strengthen this tube, we accepted the 
larger image and developed a systematic method of aligning the mirrors 
to give the minimum size of image over the working range of elevations. 
The final alignment was evolved by measuring the deflection of each 
mirror with the aid of a television camera mounted at the focus. Th is 
television system was also used to monitor the image while tracking 
Jupiter and to make the final adjustments of the time constant and 
servo-gain of the photoelectric star-guiders. 

Another significant technical problem which showed up at this 
point was the difficulty of getting the two reflectors to roll smoothly 
and precisely on the circular railway track. Th is proved surprisingly 
hard to do. We had to replace the original wheels of mild steel with 
new ones of very hard steel and then machine them into sections of a 
cone with its apex at the centre of the 188 m circle. The axles had 
also to be aligned optically on the centre of the track with extreme 
precision, and the track itself had to be adjusted to make it level. 

These, and many other mechanical problems, kept us and the 
Sheffield team fully occupied until January 1963 when the electronic 
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correlator arrived, bringing with it its own train of peculiarly difficult 
electronic problems. Its installation took four months using the 
combined ingenuity of Arthur Browne of Mullards who accompanied 
it and of our own team which was now joined by Roy Al len of Jodrell 
in March 1963. Not until M a y 1963 was the complete interferometer 
ready to be tested for the first time on the bright star /3 Centauri. 

1.9 Preliminary Test, Pilot Programme and Teething Troubles 
This was the long-awaited moment; over ten years work had gone 

into its preparation and, short of an earthquake, one felt there was 
nothing left that could possibly go wrong. Everything worked well, 
even the star-guiding, but there was absolutely no correlation. I must 
admit to a slight sense of panic; a hasty review of the whole theory 
with Richard Twiss was followed by a critical examination of every 
nut and bolt. We found an explanation fairly quickly; we had 
equalized all the time delays in the cables and the correlator, but not 
in the phototubes. Urgent experiments with short pulses of light 
from a spark showed that the delays in the two phototubes were different 
and must be equalized. This done, our observations of /? Centauri 
were more successful but there was still only half the expected correla
tion. A second anxious scrutiny failed to explain the trouble until, as 
a last resort, we turned the equipment on to Vega. A l l became clear; 
by sheer bad luck we had chosen to start with a star of unknown 
complications. At that time, Centauri was thought to be a widely 
spaced binary with a relatively faint secondary component. We later 
showed that there are three stars, the 'primary' itself consisting of two 
stars of comparable brightness which had not previously been resolved, 
and it was this third star which explained the low correlation. Greatly 
relieved, we persevered with the measurements on Vega and completed 
them successfully in August 1963. We published the results as a 
preliminary paper, to show that the instrument actually worked 
(Hanbury Brown, Hazard, Davis and Allen, 1964). After a few minor 
improvements to the equipment we then embarked on the measurement 
of four more stars in a programme lasting about 250 hours during 1964. 

This pilot programme showed that the limiting sensitivity of the 
equipment was about one magnitude brighter than we had hoped. 
(We later realized that a significant part of this loss was due to excess 
atmospheric dust following the eruption of the volcano Mount Agung 
in Bali in 1963.) It also showed that the stability and reliability of 
the electronic correlator were not good enough. In fact the design 
of a satisfactory correlator proved to be by far the most difficult problem 
of the whole project. It is described in Chapter 8. The basic difficulty 
is to free the output from small irregular zero-drifts. In this respect 
the most critical component is the linear multiplier, and it was not until 
the wideband transistorized linear multiplier designed by R. H . Prater 
of the School of Electrical Engineering in Sydney became available 
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that we could stabilize the correlator satisfactorily. We introduced 
this multiplier in December 1964 and, at the same time, Mullards L t d . 
presented us with a completely transistorized programme unit which 
greatly improved the reliability of the correlator. Also I visited 
R . C . A . in Lancaster, Pennsylvania, and persuaded them to make us 
some better phototubes. 

Following this pilot programme of 1964 we worked out a standard 
procedure for observing stars and analysing the results. In doing 
this we were fortunate to have the help of an astonishingly industrious 
and critical visitor, Professor Dan Popper of the University of Califor
nia. We have stuck religiously to these procedures ever since, so that 
all our results have been taken and analysed in the same way. 

As was to be expected with such a novel instrument, technical 
troubles were accompanied by financial and administrative problems. 
When I first arrived in Sydney in 1962 it was clear that, as in all new 
projects (e.g. the Opera House in Sydney), we had underestimated 
eo-ts. We had expected that the total installed cost would be £140 000 
sterling. In fact it was £225 000 sterling, the principal discrepancy 
being in the costs of construction of the site and more particularly in 
the labour costs of wiring and erecting the equipment. The D . S . I . R . 
had contributed £93 000 and the School of Physics at Sydney wished 
to limit their contribution to £ 9 6 000. This meant that I had to find 
the difference of £36 000 from somewhere else. I made unsuccessful 
approaches to several foundations in the U . S . A . and to the Nuffield 
Foundation in the U . K . Finally I went to Washington and called on 
the Office of Scientific Research of the Uni ted States A i r Force. They 
were enthusiastic about the project and in January 1963 they made a 
LM nt of SI22 500 to the capital cost and also a substantial contribution 
to die annual running costs. From that day to the end of the pro
gramme we have never been short of money. 

Administration of a joint project in which one partner is 12 000 
miles away and the other 350 miles from the scene of action easily gets 
into a three-cornered muddle of divided responsibility and ambiguous 
communication. Not surprisingly there were misunderstandings 
between the Universities of Manchester and Sydney as to who was 
responsible for what. They stemmed largely from the fact that the 
equipment was not properly tested before it left U . K . and that the 
cost of preparing the site in Australia was badly underestimated. I 
tried to reduce the friction by writing detailed accounts of what was 
happening and where the money was going, but in those early days 
I was more anxious to straighten out the practical problems at Narrabri 
than to apportion blame. Although it is one of the sacred cows of 
university dogma that teaching and research must go hand in hand, 
the organization and facilities of day-to-day university life are seldom 
designed to make it easy to do research on the actual campus, let alone 
beyond the black stump. In New South Wales this is made even 
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worse by the absurd centralization of population, outlook, and every
thing else in Sydney. I remember trying to explain to the Accounts 
department of the University of Sydney that our casual labour at the 
Observatory, aborigines living in tents, could not read the elaborate 
tax forms which they kept on sending to me and did not appear to fit 
into any of the social categories listed on them. Manchester and 
Sydney are no exception to the rule that universities tend to use too 
many committees and too few technicians. In practice this meant that 
if we wanted anything done—such as repairing the correlator or the 
air-conditioning or getting frogs out of the plumbing—we did it our
selves ; this left me too busy to conduct an effective public relations 
programme. However, in the course of time all was sweetness and 
light due in large part, I feel, to the patience of Professor Messel and 
the forbearance of the Officers of Manchester University. 

1.10 The Main Work of the Observatory 
The main programme of the Observatory began with /} Crucis in 

M a y 1965 and ended with 8 Canis Majoris in February 1972. Broadly 
speaking the work had three main objectives; first of all we wanted to 
make a significant contribution to stellar astronomy by measuring 
the angular sizes of 32 single stars carefully chosen to represent the 
spectral range O to F . Secondly, we aimed to explore various other 
applications of an intensity interferometer to astronomy including 
the detection of close-spaced binary stars, the measurement of the 
angular size of an emission region surrounding a hot star, the investiga
tion of the effects of limb-darkening, polarization and rotation on a 
single star, and, what turned out to be the most interesting application 
of all, the determination of all the parameters of a spectroscopic binary. 
Thi rd ly , we were interested in developing the technique itself; in the 
course of doing this we examined the effects of atmospheric scintillation 
and Cerenkov light from the sky; we developed a reliable and stable 
correlator and we improved the sensitivity of the equipment. It is 
satisfactory to note that by the end of 1966 we had reached a limiting 
magnitude of +2-5 for which the instrument was originally designed. 
A n account of all this work is given in later chapters. 

It was a lengthy and ambitious programme for such a small and 
novel observatory in a rather isolated place, and I am reminded of a 
remark I heard Sir Edward Appleton make in 1952 during a visit of 
U . R . S . I , to Australia. He emphasized that the most outstanding 
thing he remembered about his long career in research was the actual 
physical effort involved. I was surprised at the time, but now, 20 years 
later, I (and I suspect my colleagues also) understand exactly what lie 
meant. The personal difficulties of the staff in leading a double life 
by trying to combine their teaching duties with a demanding research 
programme 350 miles away are obvious; we owe much to John Da \ i s 
who for years undertook the tricky and unrewarding chore of arranging 
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the observing roster. Moreover I am keenly aware that his job was 
made harder by my wish to keep the number of staff to a min imum; at 
no time did we have more than four senior people who could take 
charge of the observing and the overall number of people in the whole 
department at any one time never exceeded ten. F rom previous 
experience of the early days of radar at Bawdsey Manor and of the early 
days of radio-astronomy at Jodrell Bank, I know how much easier it is 
to maintain interest in a project if everybody has a large personal share 
in the responsibility of the venture as well as in the routine. Th is 
nei ssarily means a small group—perhaps our group was too small, but 
1 u .is acutely aware that everybody's share might be in failure rather 
than success and that we all risked, at the least, wasting our time. 
However, I do believe that all of us at Narrabri felt a personal concern 
for the project and shared in the satisfaction of its ultimate success. 

Dur ing the seven years of the main observing programme we spent 
at least 2500 hours actually taking measurements on stars, which means 
that the whole equipment ran for very much longer. But much of 
our time was devoted—and that is an appropriate word—to main
taining this complicated apparatus in constant working order out in the 
Australian Bush. Although Graham Gifford, our caretaker mechanic, 
has taken good care of the site and its machinery for over ten years, 
we have not had a full-time electronic technician at the Observatory. 
It is in fact difficult to provide a satisfactory job at such a place for 
someone who is sufficiently skilled to maintain and repair the correlator, 
computer and control system. Each senior observer therefore had to 
be able to maintain the electronics himself. This severely limited our 
choice of observers and made the equipment unusable by visitors 
working on their own. 

I n some ways the bush was helpful. The dryness and clean air 
reduced corrosion and accounted for the surprising fact that, even 
after ten years, the mirrors were almost as good as new. On the whole, 
however, the isolation works against efficient maintenance. For 
example, spare parts take a long time to come and, on a modest budget, 
one cannot manage to keep everything needed in stock even if one 
could foresee everything necessary. We had not expected to suffer 
from destructive birds. Yellow-throated Miners (not to be confused 
with the Indian Mynahs), for example, are so fascinated by their own 
reflection that they wi l l peck away at a mirror until its surface is ruined. 
This only happens when the mirrors are in the garage, and for a long 
time it was cured by a hawk that nested in the roof. One is reminded 
of the advice given by the Duke of Wellington to Queen Victoria when 
she asked him how to keep sparrows out of the Crystal Palace. Another 
more serious trouble was that the beautiful pink and grey parrots, 
galahs, loved to hang upside down on the catenary wires and peck at 
the smaller cables like wire-cutters until they actually severed them. 
We eventually discovered that the cables could be protected by 
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wrapping them in tarred roofing felt for which, apparently, parrots 
have no appetite. 

Other unforeseen snags arose from the changing pattern of country 
life. In 1962 the land was devoted to grazing, but times have changed. 
Sheep are no longer profitable, wheat and cotton have replaced much 
of the grassland and the emus and kangaroos have gone. Undesirable 
features followed; dust from the increasing number of ploughed 
paddocks, brilliant headlights from night ploughing and crop-dusting, 
and worst of all, the smoke made by burning-off the wheat stubble 
after the harvest. Soon after I arrived, television also reached the 
north-west plains of N . S . W . and I had to negotiate tactfully in M e l 
bourne a redistribution of transmitting frequencies so as to avoid 
serious radio interference with the operation of our correlator. 
A pleasant surprise was the cordial and tolerant attitude of the local 
inhabitants among whom I would like to mention M r . and Mrs . L . I \ 
Mi l l e r who run the property on which the Observatory is built. We 
appreciated, too, the interest of the hundreds of people who ventured 
to come and see us. Many of course, were astronomers from all over 
the world, but we also entertained a wide variety of other visitors. On 
the one hand we have been honoured by visits from the Governor 
General of Australia, and from London, the President of the Royal 
Society; on the other hand, there have been countless school-children 
and the inevitable bus loads of tourists, most of whom, and I sympathize, 
have got out of the bus largely to stretch their legs. 

Looking back on the whole programme I am satisfied that the work 
of these years did achieve our three principal objectives. We made 
reasonably precise and reliable measurements of 32 single stars; these 
include the first measurements ever made of a main sequence star and 
the first measurements of any star earlier than type M . We increased 
the number of known angular diameters from 6 to 38 and we showed 
how this number could be increased indefinitely. Th is work stands as 
a permanent and valuable contribution to stellar astronomy and it 
alone justifies the time, anxiety and expense of the whole project. 

Our demonstrations of the potentialities of an intensity interfero
meter were necessarily less satisfactory. They were, of course, limited 
by the fact that we were trying to show with a relatively small instru
ment what a much larger one could do. The experiments on limb 
darkening, stellar rotation and polarization were all too close to the 
limits set by signal-to-noise ratio; furthermore, much to mv l i s -
appointment, the sensitivity of the Narrabri interferometer is t o o l o w 
to observe the pulsations in radius of a Cepheid variable, in mv \ i e w 
the most interesting untried application of an interferometer. 1 low-
ever, these shortcomings are largely redeemed by our successful 
observations of the spectroscopic binary a Virg in is ; the measurement 
of the orbital inclination and the distance of this star are most striking 
examples of the potential of an interferometer. 
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Lastly 1 think we made a reasonable, though not comprehensive, job 
of developing the technique itself; but we did solve the most difficult 
problem of all—that of building a stable and reliable correlator. As 
a result it is now possible to take the next step in this work with con
fidence and to tackle the exciting possibilities which are outlined in the 
last chapter of this book. 

1.11 The Future 
Most active research groups, not only in astronomy, eventually 

reach the conclusion that what they really need is a larger and more 
expensive instrument. We at Narrabri Observatory are no excep
tion and we have proposed (Chapter 12) that the next step should 
be to build a larger and more sensitive interferometer capable of 
measuring stars 4.| magnitudes (~60 times) fainter than we can now 
reach. Broadly speaking, we propose that having solved the difficult 
and classical problem of how to measure the angular size of the stars, 
we should now explore thoroughly the possibilities of this new 
technique. In observational astronomy, as in most branches of 
science, it is the introduction of new tools such as the photometer, the 
spectroscope, the radio-telescope and the image intensifier, which 
has made significant advances and guided the direction of research. 
The intensity interferometer is a completely new tool and as such, 
it can be expected to contribute qualitatively new information to 
advance our understanding of the stars. 

In Chapter 12 I have outlined the more obvious research pro
grammes which could be undertaken. The first of these (§ 12.2) is 
the measurement of the emergent fluxes, effective temperatures and 
radii of single stars and is a straightforward extension of the work 
at Narrabri to a greater variety of stars. We are quite confident that 
tins would yield worth while results and it is, in effect, the bread 
and butter of our proposal. However, some of the other programmes 
s u c h as the observation of the radial pulsations of Cepheid variables 
(jj 12.4) or the shape of rotating stars (§ 12.5) are speculative and might 
well turn up surprises—we cannot tell until we have tried. 

Our current efforts to raise money for a new interferometer began 
in earnest in 1971 when we submitted a proposal to the Australian 
Government. We asked for a grant towards a design study of a large 
stellar intensity interferometer (see Chapter 12) estimated to cost 
about as much as a 2 m telescope with dome and accessories—in 
those days about $A 2 m. Since then, our proposal has been assessed 
and discussed around the world by astronomers, weighed in the scales 
against scientific fashion and relevance by laymen and politicians, 
and has come through with flying colours. It has even survived 
two elections of the Australian Government. In my own view, the 
Slough of Despond, the H i l l Difficulty and Doubting Castle lie 
behind us. I am hopeful—and if you remember your Bunyan— 
Hopeful was not disappointed. 
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CHAPTER 2 
a simple explanation of how an 
intensity interferometer works 

2.1 Introduction 
Experience suggests that many people who open this book will be 

looking for an explanation of intensity interferometry and hoping for a 
satisfactory mental picture of how an intensity interferometer 'actually 
works'. There are two difficulties in presenting such a picture; 
first, there is no satisfactory mental picture of the wave-particle theory 
of l ight; secondly, most physicists and astronomers are not familiar 
with what takes place when a wave with the characteristics of random 
noise is demodulated by a square-law detector—they feel uneasy or 
baffled when confronted with an explanation which is acceptable to a 
radio engineer. A n obvious remedy is to describe it in terms of 
photons; however, as remarked later, explanations in terms of photons 
are liable to serious misinterpretation. For this reason the explanation 
offered in this chapter does involve some understanding of what happens 
in a square-law detector. 

T o put the intensity interferometer into a better perspective we 
shall first discuss Michelson's stellar interferometer. Since there are 
many descriptions of this classical instrument in standard texts, the 
discussion wi l l be brief. 

2.2 Michelson's Stellar Interferometer 
Figure 2.1 illustrates the principle of Michelson's interferometer. 

Light from a star is received on two small separated mirrors M , , M 2 

and is reflected via M 3 , M 4 into the larger mirror M which brings the 
two beams together in the focal plane at O. By this arrangement the 
two images of the star, as seen in the two small mirrors, are super
imposed. If the two mirrors are not too far apart the two images 
interfere, forming alternate bright and dark bands across the patch of 
light (fig. 2.2). When the two mirrors are close together, or the star has 
a small angular size, then the intensity in the dark bands approaches 
zero and the contrast or visibility of the fringes is high ; as the mirrors 
are separated this visibility decreases until eventually the fringes vanish. 

22 



Fig. 2.2. Fringes formed in a Michelson interferometer. 
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If the visibility at any mirror spacing d is defined by 

V d (I mux ~ A n in)/(^mas 4" ^ min ) 

where / m a x and 7 i n i n are the maximum and minimum intensities in 
the fringes, then it can be shown (e.g. Born and Wolf, 1959) that 

vd = \yd\ (2.1) 

where \yd\ is the degree of coherence (§3.2) of the light at the two 
mirrors, which depends upon the angular diameter 6 of the star, the 
wavelength of light and the separation between the mirrors d. For a 
star with a uniform circular disc, Va varies with d as shown in fig. 2.3 
and reaches zero when 

d=\-22\\d. (2.2) 

Michelson's stellar interferometer was mounted on the 100 in 
telescope at Mount Wilson. The separation between the two small 
mirrors M , , M 2 could be controlled by the observer and the maximum 
possible value was 6 m. In operation the fringes were first observed 
with the two mirrors close together and then the spacing was increased 
until they disappeared. From a measurement of this critical spacing 
the angular diameter of the star was found from equation (2.2). 

Michelson's interferometer has serious disadvantages. First, in 
order that there should be steady fringes, it is essential that any differ
ence between the path lengths from Mlt M 2 to O should be extremely 
stable. Any change in the difference, comparable with the wavelength 

=— d e/A 
Distance between mirrors 

Fig. 2.3. Variation of fringe visibility with separation of mirrors for a Michulson 
interferometer (full line), an intensity interferometer (broken line). The 
source is a uniform circular disc. 
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of light, wil l displace the fringes in the focal plane. Slow displace
ments are relatively unimportant but rapid displacements blur the 
fringes and reduce their apparent visibility. A second requirement 
is that the actual difference between the two paths must be small 
compared with the coherence length (§3.4) of the light. Both these 
requirements demand an extremely stable and rigid structure which 
must be pointed precisely at the star and, for these reasons alone, it is 
difficult to construct and operate a large instrument. Finally, the 
most serious trouble is that atmospheric scintillations introduce rapid, 
random and uncorrelated differences into the paths of the light reaching 
the two small mirrors. In consequence the measurements of fringe 
visibility are significantly affected by the atmospheric 'seeing' and have 
proved to be variable (Pease, 1931). 

These difficulties—the need for extreme mechanical precision and 
the dependence of the measurements on the 'seeing'—have so far 
prevented the development of Michelson's stellar interferometer 
beyond the original 6 m model. A n attempt was made by Pease in 
the period 1925-1937 (Pease, 1925, 1930) to extend the work by 
building a 15 m interferometer at Mount Wilson. However, this 
larger instrument proved extremely difficult to operate and would not 
yield consistent results. Thus the fist of stars measured by Michelson's 
interferometer still comprises only the six stars shown in Table 2.1; 
these are all cool giants or super-giants in the spectral range K to M 
and do not include a single member of the main sequence. 

Star Spectral 
type 

Luminosity 
class 

Angular diameter 
X 10 3 seconds of arc 

• « Boo K 2 Giant 20 
* Tau K5 Giant 20 
a Sco M 1 - M 2 Super-giant 40 

M2 Giant 21 
aCet M6e Giant 47 
a Ori M 1 - M 2 Super-giant 34->47 

variable 

Table 2.1. Stars measured with Michelson's interferometer. 
From Pease (1931). 

2.3 The Intensity Interferometer 
A simplified outline of an intensity interferometer is shown in 

fig. 2.4. Light from a star is received on two separated photoelectric 
detectors, D 0 D 2 and produces output currents ilt i2. These currents 
fluctuate and an intensity interferometer relies on the fact that the 
fluctuations are partially correlated. The principal component of the 
fluctuations is the classical shot noise associated with any current but, 
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Low-pass filters 

Linear multiplier 

Correlation meter 

Fig. 2.4. Simplified outline of an intensity interferometer. 

in addition, there is a smaller component called wave noise which 
corresponds to the fluctuations in the intensity of the light wave. One 
can think of this wave noise as the envelope of the light wave rectified 
by the photoelectric detector. The major component of noise, that 
is to say the shot noise, is not correlated with the shot noise in the other 
detector; but the minor component, the wave noise, is correlated with 
the wave noise in the other detector provided that there is some degree 
of coherence between the light at the two detectors. Thus, when the 
two fluctuating currents are multiplied together in the linear multiplier 
M , there wil l be a small positive product corresponding to the correla
tion of the wave noise components. It can be shown (§ 3.5) that this 
product, or correlation c(d), is proportional to the square of the degree 
of coherence of the light at the two detectors and is therefore also 
proportional to the square of the fringe visibility which would be 
observed in a Michelson interferometer under the same conditions. 
Thus, if A!j(t), Ai 2 ( r ) are the fluctuations in the two currents, we may 
write 

cAd)Kv(o)= < A i 1 ( / ) A i 8 ( 0 > / « i 1 > < i s » = |y ( , | J = V/ (2.3) 
where |y r f

2 | is the degree of coherence, Vd is the corresponding fringe 
visibility, cs(d) is the normalized (§ 10.1) correlation with a baseline d 
and f \(o) is, in effect, a constant of the equipment. 
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It follows that, when observing a star, the correlation wi l l decrease 
with increasing baseline as shown by the broken line in fig. 2.3 and 
that a measurement of this curve will give the angular size of the star. 
It should be remarked that there are no interference fringes formed in 
an intensity interferometer and in a classical sense there is no inter
ference of l ight; the interference takes place between the electrical 
fluctuations at the linear multiplier. It may also be noted that, unlike 
a Michelson interferometer, the instrument measures the square of 
the modulus of the complex degree of coherence and so the phase of 
this complex function is lost. Broadly speaking, this means that one 
cannot reconstruct the angular distribution across an asymmetrical 
source without ambiguity; for example, when observing a double star 
with two unequal components, one cannot tell which star is 'on the 
left' and which is 'on the right'. 

We shall now enquire why the wave noise in the two detectors is 
correlated, since this is the principal question which many people have 
asked and found difficult to understand. One way of looking at the 
problem is as follows. Consider two elementary points P l t P 2 in fig. 2.5 

Fig. 2.5. Illustrating the principle of an intensity interferometer. 
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on the surface of a star. Each point radiates white light and is com
pletely independent of any other point. Following conventional 
Fourier analysis we may represent the wave form of this light as the 
superposition of a large number of sinusoidal components, each 
component having a steady amplitude and phase over the period of 
observation but both the amplitude and phase being random with 
respect to the other components. We shall assume that the light is 
limited in bandwidth by an interference filter in front of each detector 
to some convenient band, say 450 nm ± 5 nm and that the electrical 
filters f 1 ( f2 pass all frequencies in the band 1-100 M H z . Consider 
now one Fourier component of the light i ^ s in ( c u ^ - r - ^ j ) reaching 
detector A from the point P x , and a second component of different 
frequency E2 sin (<u2t + <f>2) in the light reaching A from P 2 . The 
output current from A is proportional to the intensity of the light and 
so we may write, assuming simple linear polarization, 

t A = KA [£ j sin (<V + <M + E 2

s i n (">2* + <£z)]2 ( 2-4) 

where KA is a constant of the detector. 
The same two Fourier components wil l also illuminate B and give 

rise to a current 

i B = KH[Ei sin (o,(f + djc) + fa) + E2sin (o>2(t + d2\c) + fa2)f. (2.5) 

Expansion of equations (2.4) and-(2.5) shmvs that in the output of 
each detector there are four components:/ 

*A = hKA {(Ei2 + E2

l) - [Ei2 cos2(w1t + fa) + E2

2cos2(<V + <f>2)] 

- 2E1E2 cos [(w1 + io2)t + (fa + fa)] 

+ 2EXE2 cos [ K - oj2)t + (fa - fa)]} (2.6) 

iu = \KH {{Ef + £2

2) - [E* cos 2( W ] (* + djc) + fa) 
+ E2

2cos2(w2(t + d.Jc) + fa)] 

— 2ElE2cos ((<o1 + cu2)t + co1d1/c + u>2d\c + (<f>i + 4>2)) 

+ 2E1E2cos ((w1-co2)t + (o^Jc-oj2d2/c + (fa - fa)) ]. (2.7) 

The first term in both of these equations is the familiar d.c. component 
proportional to the total light flux falling on the detector. In a practical 
instrument this is rejected by the filters (f 1 ( f2 in fig. 2.5) and is measured 
in a separate circuit as a record of the light flux from the star. The 
second and third terms correspond to second harmonics (2<<J,, lou) 
and sum frequencies (a>j+o>2) of the light respectively; quite apart 
from worrying about their physical significance, we may dismiss them 
because they do not lie within the frequency range passed by the filters. 
It is the fourth term, corresponding to difference frequencies of the form 
(o)j — o i 2 ) which concerns us here. If these difference frequencies lie 
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within the pass-band of our filters, 1-100 M H z , they will reach the 
multiplier and there wil l therefore be two components at the multiplier 
of the form 

i A - / s r A £ , £ 2 [ c o s K ~co2)t + (fa -fa)] (2.8) 

iu = K^E^cos (w1 - co^t + (fa - fa) + co^Jc - <u2d.Jc]. (2.9) 

One can see from these two equations that these two components 
(/A,;'i,) are correlated; they have the same frequency but they differ 
in phase by (o)1d1lc — u>.,dilc). Their product, or correlation, is 

c(d) = K^KnE^E^ coa [(w/c) (</, - d2)] (2.10) 

where, for simplicity, we have put coj % co2 = w. It is important to note 
that the phase difference between these correlated components 
is not simply the phase difference of the light waves at the two detectors 
but is the difference between the relative phases of the two Fourier 
components at the detectors. Finally, by simple geometry, we may 
rewrite equation (2.10) as 

c(d) = KAKuE*E* cos (2W0/A) (2.11) 

where d is the separation or baseline between the detectors, 9 is the 
angular separation of the two points P 1 ; P 2 on the star and A is the mean 
wavelength of the light. 

T o extend this result to give the total correlation observed from a 
star, it is necessary to integrate equation (2.11) over all possible pairs 
of points on the disc of the star, over all possible pairs of Fourier 
components which lie within the optical bandpass and over all difference 
frequencies which lie within the bandpass of the electrical filters. 
Such an integration (Hanbury Brown and Twiss, 1957 b) yields the 
strikingly simple result, quoted in equation (2.3), that the correlation 
is proportional to the square of the modulus of the complex degree of 
coherence | y | 2 of the light at the two detectors. It is therefore also 
proportional to the square of the fringe visibility in a Michelson 
interferometer with the same baseline. It follows that we can measure 
the angular size of a star by measuring the correlation c(d) as a function 
of the separation d between the detectors. 

The principal advantage of an intensity interferometer can now be 
understood in terms of this 'Fourier component' model. The 
essential point is that the correlation is a function of the difference in 
phase between the low-frequency beats formed at the two detectors. 
It is not a function of the phase differences of the light waves at these 
points and so we are not concerned, as in Michelson's interferometer, 
to ensure that any path differences are less than the wavelength of light. 
Thus we may, if we wish, delay the light reaching one detector by 
several thousand wavelengths without affecting the correlation, 
provided that this delay is small compared with the period of the highest 
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beat-frequency which we pass to the multiplier. The reason for this 
remarkable property of an intensity interferometer is clear from the 
model; when we delay the light by a time T both Fourier components 
ojj and C / J 2 are delayed equally and so their beat-frequency (w1 — w2) 
is simply delayed by a time T . If the highest beat-frequency (~ 10 8 Hz ) 
passed to the multiplier is roughly one mil l ion times less than that of 
the light ( ~ 1 0 1 4 Hz ) , then a path difference of some thousands of 
wavelengths wil l have a negligible effect on the relative phases of the 
two beat-frequencies at the multiplier, and hence wil l not affect the 
correlation. It is also interesting to note that it makes no difference 
whether the delay is inserted in the light path before detection or 
afterwards in the electrical path between the detector and the multiplier. 
Perhaps one should also note at this point that these statements about 
the effects of a delay are only true provided that the delay itself is 
non-dispersive over the relevant optical or electrical bandwidth. 

It follows from this discussion that the use of intensity interference 
completely transforms the problems of building an interferometer. 
Consider first the problem of achieving the necessary mechanical 
precision which is such a serious obstacle in Michelson's interferometer. 
As we have seen, in an intensity interferometer we must ensure that any 
path differences between the two arms of the instrument are small 
compared with the wavelength of the highest beat-frequency which 
reaches the multiplier. If therefore we restrict this frequency to 
100 M H z , then we need only equalize the two paths with a precision 
of about 30 cm, and this is simple to achieve even in a very large 
instrument. The second major problem, the effects of atmospheric 
scintillation, is overcome for the same reason. Thus it can be shown 
that any differential path length or time delay introduced by atmospheric 
irregularities is likely to be very much less than 30 cm and it follows 
that an intensity interferometer is almost completely insensitive to the 
effects of the atmosphere. 

T o summarize, it is possible to build an intensity interferometer 
with the very long baselines and extremely high resolving powers which 
are needed to measure a reasonable sample of stars, particularly of hot 
stars. It is also possible to make reliable measurements through the 
Earth's atmosphere. 

Finally, it should be said that there are many alternative ways of 
understanding how an intensity interferometer works. For example, 
one may follow the radio-engineer and regard the incident light as 
band-limited Gaussian noise which is demodulated by a square-law 
detector. If the incident light is a plane wave, then the envelope of 
this wave is identical at two points separated by a baseline parallel to 
the wave front. It is then clear that the demodulated components of 
the envelope in the output currents of the two detectors must be 
correlated, and this correlation can be evaluated by conventional 
formulae from the theory of square-law detectors. As another 
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alternative one can follow some physicists and explain the operation in 
terms of Bose-Einstein statistics and the 'bunching' of photons in the 
same cell of phase-space. This bunching is illustrated in fig. 4.8 in 
chapter 4 which shows the conditional probability that a second photon 
is received by a detector in a short time interval APT after receipt of a 
first photon. The curve assumes that the light beam is a plane polarized 
wave with a Gaussian spectral profile of bandwidth Av and the con
ditional probability has been normalized to that for a stream of 
independent particles. It is interesting to note that, for very short 
intervals, the probability of finding a second photon is twice that for 
independent particles. If the two detectors are effectively in the same 
cell of phase-space, for example, if they are separated parallel to the 
wave front, then the arrival of photons wi l l appear to be correlated in 
t ime; they wil l tend to arrive in pairs. The operation of an intensity 
interferometer can certainly be interpreted in this way, nevertheless 
it is my experience that the semi-classical 'Fourier component' 
model, as presented in this chapter, is freer from conceptual 
traps and is a more effective tool for getting the correct answers to 
detailed quantitative problems about an intensity interferometer. 
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CHAPTER 3 
the theory of coherent light 

3.1 A Mathematical Description of Light 
In several classical papers (e.g. Einstein and Hopf, 1910; Einstein, 

1915; von Laue, 1915 a, b) it has been established that white light of 
thermal origin has the properties of a Gaussian random process. We 
may represent, for example, the electric vector of a light wave as the 
superposition of a set of Fourier components of different frequency 
with amplitudes and phases which are statistically independent and 
randomly distributed. If, therefore, V(r)(t) (— oo < cc) is a Car
tesian component of the electric vector at a fixed point in space, then 
we may represent it by the Fourier integral 

VW(t) = fa( v) cos [4>(v) - 2irvt] dv. (3.1) 
o 

However, following most modern texts on optical interferometers, e.g. 
Born and Wolf (1959), Francon (1966), Steel (1967), we shall trans
form this representation into the complex analytic signal V(t) by 
associating with V-r\t) the conjugate function V(i)(t) so that 

V(t)=V^{t) + [V«\t) (3.2) 
where 

00 
V®(t) = \a(v) sin [4>{v) - lirvt] dv (3.3) 

0 

and we may then write the analytic signal as 

V(t) = ]a{v) exp i[^(v) - 2nvt] dv (3.4) 
o 

Alternatively, if V(r)(t) is represented by a Fourier integral of the form 

Vw(t) = +f exp [ - 2*rivf] dv (3.5) 
— CO 

where 
» ( " ) = * « ( " ) e x p M M ] (3.6) 

then the associated analytic signal is 
V{t) = 2fv(v)exp[-2rrivt]dv. (3.7) 
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Thus V(t) may be derived from the Fourier integral of V(r>(t) by 
simply suppressing the negative frequencies and multiplying the 
amplitudes of the positive frequencies by 2. The following relations 
wi l l be useful later and are simple to prove; 

+ 00 + 00 + 00 
J V*(t)V(t)dt = 2 j" V^-(t)dt = 2 J V™{t)dt 

— 00 —00 — 00 

= 2 f |»(v)|*dv = 4 J | 7 ^ ) | 2 d v . (3.8) 

Because it is convenient when dealing with stationary random 
processes we have assumed so far that V(t) is defined for all values of t. 
In practice, observations wil l only be carried out over some finite 
time — T^t^ T, but we are justified in letting T^oo if it is long 
compared with any significant periods characteristic of the light wave 
(e.g. the coherence time). We must however define the average 
intensity of the field with respect to a finite time T. Following 
conventional practice, this may be done as follows. The field is 
represented by the truncated functions 

VTW(t)=V<0(t) when \t\^T 

= 0 when \t\ > T 

and by analogy with equation (3.7) we may write 

VT(t) = 2$vT(v) exp ( - 2nivt) dv (3.10) 

and the time average of the intensity^ is then given (equation 3.8) by 

KV*(t)V(t))=( V™(t) > = 2{ G( v) dv (3.11) 
0 

where 

G(v) = L i m i t 1 y " . (3.12) 

G(v)dv is the contribution to the total light intensity made by all the 
frequency components within the range v to v + dv and is called the 
spectral density of the light; it is loosely called the spectrum of the 
radiation and is measured by a spectro-radiometer. 

3.2 The Interference of Two Partially Coherent Beams of Light 
In fig. 3.1 consider the pinholes P l t P 2 in an opaque screen A 

illuminated by a source of light S. The pinholes allow light to pass 
to a second screen B. We shall now discuss the intensity of the light 
on this second screen, 

f Power per unit area normal to the direction of propagation. 

3 3 

D 
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If the fields at P x , P 2 are represented by the analytic signals ^ ( r ) , 
V2(t), then the field at Q may be written 

^u(0 = *i^x(0 + * 2 ^ + r ) (3.13) 

where klt k2 are the complex amplitude transmission factors for the 
paths through the two pinholes and take account of the dimensions of 
the pinholes, the amplitudes and phases of the diffracted secondary 
waves and the distances of Q from the pinholes; T is the difference 
between the times taken by the radiation from the pinholes to reach Q . 

Fig. 3.1. 

The intensity at Q is the time-average of the square of the real 
signal F Q

( r ) ( r ) which, neglecting a constant, we may write 

A=(V (0M0> (3 .H) 
where the angle brackets denote the time-average. From equations 
(3.13) and (3.14) 

^Q = l ^ | 2 A + l ^ | 2 A + 2 R e [ A 1 * * 2 r i 2 ( r ) ] (3.15) 

where T 1 2 ( T ) is called the mutual coherence function of the light at the 
two pinholes and is defined by 

ri2(r) = <^*(0^(' + ^)>. (3.16) 

We may also write 
l\l(0)=(Vl*(t)V1(t)) = I1 

V22(0)=(V2*(t)V.2(t)) = I2 (3.17) 

where Ix and 12 are the intensities at the two pinholes. 
Equation (3.15) can be written in a more general form in terms of 

the dimensionless complex degree of coherence yl2(r) where 

y » ( T ) = {V 2 }- 1 , 2 r 1 2 ( r ) (3.18) 
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so that 
' Q = / W + hu + 2 {/,«/«, J 1 2 Re [y 1 2 (r)] (3.19) 

where I1Q and 7 2 Q are the intensities produced at Q by the two pinholes 
separately. 

Equation (3.19) shows that the intensity at any point on the second 
screen can be found from a knowledge of the intensities at that point 
which would be produced by the pinholes independently and the real 
part of the complex degree of coherence between the light at the 
pinholes for the appropriate value of T . Conversely it is possible, at 
least in principle, to find the complex degree of coherence of the light 
at the two pinholes by making measurements of the light on the 
screen B. 

3.3 Spatial Coherence—the Dependence of Coherence on the Angular 
Size of the Source 

Let us suppose that in the interference experiment illustrated in 
fig. 3.1 the point Q is equidistant from the two pinholes Plt P 2 so that 
we may put T = 0 and write equation (3.19) as 

IQ = AQ + Im + 2 ( / 1 Q / 2 0 ) 1 ' 2 Re (y 1 2(0)). (3.20) 

Fig. 3.2. Illustrating the van Cittert-Zernike theorem. 

If now we alter the separation between Pj and P 2 , or the angular size 
of the source, or the wavelength of the light, then the degree of coherence 
at the pinholes (y 1 2 ) wi l l vary also. We shall refer to this as a variation 
of spatial coherence to distinguish it from temporal coherence which is 
discussed in the next section. The dependence of this spatial 
coherence on these three parameters is the fundamental relationship 
on which all stellar interferometry depends and it is expressed by the 
van Cittert-Zernike theorem. 

Following Born and Wolf (1959) the van Cittert-Zernike theorem 
can be presented as follows. Consider the two points Pj , P 2 on the 
screen A in fig. 3.2 which is illuminated by the extended source a. 
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For simplicity we shall take the source to lie in a plane parallel to A 
and to be at a very great distance compared with the size of the source 
and the separation of the pinholes, so that all the angles between O O ' 
and lines joining points on the source to l1

1 and P 2 are extremely small. 
Furthermore, to separate clearly the effects of spatial and temporal 
coherence, we shall assume that Pj and P 2 are equidistant from the 
source and that the path difference (R2-R1) from any point on the 
source to P 1 ( P 2 is very small compared with the coherence length (c/Av) 
of the light (see §3.4) . Also for simplicity, we shall take the light 
reaching P x , P 2 to be quasi-monochromatic; that is to say, the optical 
bandwidth Av is restricted by narrow-band filters (not shown) so that 
A r ' r , , ^ 1, where v„ is the mean frequency of the filter bandwidth. Let 
us now consider the surface of the source to be divided into a large 
number of small, independent sources dau da2, . . . with linear dimen
sions small compared with the mean wavelength A 0 of the light. 
Then if Vvn(t), Vm2(t) are the complex wave amplitudes at Pj , P 2 due 
to an elementary source dam, the mutual coherence function of the 
light at those points is 

ru(0) = v1*(t)v2(t)=zvml(t)vm2(t) 
m 

+ l!Vm,*(t)Vn2{t). (3.21) 
in - n 

We may put the second term in this expression equal to zero, because 
there is no correlation between different elements of the source, and 
write 

r i a ( 0 ) = | K , 1 * ( / ) F M 4 ( 0 . (3.22) 

If I(S) is the intensity per unit area of the source and Rlt R2 are the 
distances from a typical point S to Pv P 2 , then it can be shown (Born 
and Wolf, 1959) that equation (3.22) yields 

l \ a ( 0 ) = 1 ( 7 ( 5 ) / / ? ^ ) e x p (3.23) 
a 

The complex degree of coherence y 1 2 (0) , as defined by equation (3.18), 
is therefore 

yi 2 (0) = (V,) ' 2 J ( / ( 5 ) / / , , « 2 ) exp [2^(7?! - R2)/X0] dS (3.24) 
a 

where 

I^lVWIRftdS, It = S(I(S)IR2*)dS. (3.25) 
a a 

Now let x,y, be the coordinates of a point on the source, and Xu X2 be 
the coordinates of the points P j , P 2 on the screen; we shall take the two 
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sets of axes to be parallel and P 1 ( P 2 to lie on the X axis. We may then 
write 

Ry-Ri* (X*-X*)j2R- (X,-X2)xlR (3.26) 

and putting R2xRz we may rewrite equation (3.24) as 

e x P (4)lll(x,y) exp [ - 2n\(Xl -X2)xj\R] <\x Ay 

where 

^ = (2rr!Xn) [(XS-XM2R]. 

Equation (3.27) is a form of the van Cittert-Zernike theorem and 
is the fundamental relationship we seek. It expresses the fact that 
the complex degree of coherence yV2(Q) of the light at the two points 
Pj , P 2 is given by the normalized Fourier transform of the distribution 
of intensity over the source, the source being reduced to an equivalent 
strip distribution parallel to the line joining Pj , P 2 . The factor 
exp (ii/i) represents the phase-shift (2TT/A0) ( O P x - O P 2 ) and is unity in 
the case we are considering where P x , P 2 are equidistant from the source. 

In presenting the result in equation (3.27) we have made several 
assumptions to simplify the discussion. There are two points which 
are worth noting. First, the assumption that the light reaching P, , P 2 

is quasi-monochromatic is certainly justified in an intensity interfero
meter where, for a number of practical reasons, a narrow-band optical 
filter must be used. On the other hand, such a filter was not actually 
used in Michelson's stellar interferometer and in that case it is necessary 
to convolve the expression for y 1 2 (0) with the spectral distribution of 
the light. A second point is that we have assumed, again for simplicity, 
that the source lies in a plane and this is clearly not true of a star, even 
less of a double star. It is however simple to show that our result is 
valid for a star provided only that its distance is very much greater than 
any other dimension in the whole system. It should be noted that the 
distribution of intensity across the source to which we refer is the 
distribution projected onto a plane normal to the direction of the source 
from the points P x , P 2 . 

3.4 Temporal Coherence—the Dependence of Coherence on Path 
Difference 

We shall now discuss the effect of path difference or relative time 
delay on the mutual coherence of two beams of light. The question 
which we seek to answer is illustrated in fig. 3.3. 

Suppose a plane wave from a distant source of light S illuminates the 
two points Pj , P 2 by means of a half-silvered mirror M in such a way 
that P x and P 2 are perfectly coincident when viewed from the source. 

(3.27) 

(3.28) 
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If M P 1 = M 1 )

2 then the light from S arrives simultaneously at P, , P 2 

and the degree of coherence, if we could measure it, would be y ] 2 (0) = 1. 
As we move P1 to P / , keeping P , ' and P 2 still coincident as seen from 
the source, we introduce a time delay T = ( M P / — M P , ) / c between the 
fields at P 1 ' and P 2 without altering their space coherence. The 
problem is to find how y12(i") depends upon T. 

Fig. 3.3. Illustrating the theory of temporal coherence. 

If we represent the waves at P 1 ; P 2 by the analytic signals F,(£), 
V2(t + T) then it can be shown that the mutual coherence function is 
given by 

= ( Vf<fyV%(t + r)> = 4 J G 1 2 ( . ) e x p ( - 2mvr) dv (3.29) 
o 

and therefore 

y U ( T ) = ]gu(V) exp ( - 2mvr) dvf$Gi2(v) dv (3.30) 

0 u 

where, by analogy with equation (3.12), 

G 1 2 ( , ) = L i m j t [ ^ * (

2 ^ ( ^ ] (3.31) 

and G12(v) is called the mutual spectral density of the two beams at 

Equation (3.29) expresses the important result that the mutual 
coherence varies directly as the Fourier transform of the mutual spectral 
density of the two beams of light. If the spectra at P ^ P 2 are identical, 
as they would be in many practical cases, then r i 2 ( r ) corresponds to the 
auto-correlation function of the light. In that case, equation (3.2()) 
is a statement, in optical terms of the Wiener -Khinchin theorem which 
is well known in the theory of stationary random processes. This 
theorem states that the auto-correlation function of a stationary random 
process is given by the Fourier transform of its power spectrum, which 
is the principle of Fourier spectroscopy. 
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If we consider the simple case where the mutual spectral density 
G12(v) is uniform over a narrow bandwidth Av about a mean frequency 
v0 and Av/f 0<^ 1, then from equation (3.30) 

y 1 2 ( r ) = [sin TTVTJTTVT] exp ( - 2mu0T). (3.32) 

This function reaches a first zero when the relative time delay is T 0 or 
when the path difference is /„ where 

T 0 = 1 / A V and l0 = c/Av. (3.33) 

T h is usually referred to as the coherence time and /„ as the coherence 
length of the light. 

3.5 The Correlation between Fluctuations of Intensity 
A n intensity interferometer measures the correlation between the 

fluctuations of intensity at two separated points in a partially coherent 
field. In this section we are concerned to establish only the general 
principle that such a correlation exists and not to consider any specific 
method of measurement. Consider again the two points Pj , P 2 

illuminated by a distant source of finite angular size (fig. 3.2). Follow
ing the discussion given by Mandel (1963) the intensities at P, , P 2 are 

A(0=*\Wi(0 . h(t)=V2*(t)V2(t) (3.34) 

and the correlation between these intensities is given by 

<I1(t)l2(t + r)>=<V1*(t)V1(t)Vt*(t + r)Vt{t+r)) 

= (V^(t)V2^(t+T))+(V^2(t)V^2(t + r)) 
+ < V™{t)V„M~{t + r) ) + < V^)2(t)V2

m(t + T ) >. 
(3.35) 

Now F, ( r ,(0, Viir){t), F, ( i )(0 and V£>(t) are all Gaussian random 
variates and we may therefore write 

< V™{t) V2^(t + r) > = ] A / , + 2[< V^(t) Vj»(t + T ) >]2 (3.36) 

and by expanding this equation it can be shown that 

(V™(t)VW(t+T)) = lIJ2+ HRe [ r i 2 (r) ]} 2 . (3.37) 

Similarly, 

( W ) W + T ) ) = 1 ^ « + I {im [ r i s ( r ) ]}« 
(V1^{t)Va^(t + r)) = M + I {Im [ F 1 2 ( r ) ] | 2 (3.38) 
(V1^(t)V2^(t + r)) = lI1I2+ I { Re [ r i 2 (r)] ] 2 

and substituting these results in equation (3.35) we get 

</1(0/2(<+T)> = / 1 / 2 + I V ( T ) = IJ2[\ + | y 1 2 ( r ) | 2 j . (3.39) 
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Since we are interested in the fluctuations of intensity A / , , A / 2 , about 
the mean values Ilt I2 we write, 

< / , ( « ) / , ( * + T ) > = + <A/ 1 (0A/ 2 (< + r) > (3.40) 

and from equation (3.39) 

< A / 1 ( 0 A / 2 ( ^ + r)> = | r i 2 ( r ) | 2 (3.41) 
and 

< A / 1 ( 0 A / 2 ( f + r)> = / 1 / 2 | y i 2 ( T ) | 2 . (3.42) 

Equation (3.42) establishes the basic principles on which an intensity 
interferometer depends. If the fields at two separated points are 
partially coherent, then the fluctuations of intensity at these two points 
are correlated. This correlation is, as one might expect, proportional 
to the square of the degree of coherence | y i 2 ( T ) | 2 . 

At this point we should note that the previous analysis refers to 
linearly polarized light and that in later discussions of a practical 
instrument we shall be dealing with unpolarized light. It can be shown 
(e.g. Mandel , 1963) that for unpolarized light the correlation is half 
that expected for polarized light because the orthogonal components 
of the field are uncorrelated. Thus for unpolarized light equation 
(3.42) is written 

< A / 1 ( 0 A / 2 ( f + r ) ) = i / 1 / 2 ! y 1 2 ( T ) | 2 . (3.43) 
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CHAPTER 4 
the principles of three types of interferometer 

h i The Principles of Michelson's Interferometer 
-.1.1 Fringe visibility 

In chapter 2 we reviewed briefly Michelson's stellar interferometer 
n which the light from two small separated mirrors (Mv M 2 in fig. 2.1) 
s superimposed in the focal plane of a telescope and the image of a 
star is seen to be crossed by alternate bright and dark bands called 
fringes. In operation the two mirrors are separated, the contrast or 
visibility of the fringes decreases and they eventually disappear. By 
measuring the separation of the mirrors at which this disappearance 
occurs it is possible from equation (2.2) to find the angular diameter of 
the star. 

L i g h t f r o m s t a r 

i : 
4, 1 

/ 

w 
Pi I U 

\ 
-V 

At 11 U ongnineb: , 
A.'>!!!'! i o n s c r " " 

1 ^ » B 

Q 
Fig. 4.1. Illustrating the principle of a Michelson interferometer. 

We may conveniently discuss the principles of Michelson's inter
ferometer in terms of the simple two-pinhole arrangement shown in 
fig. 4.1. The two pinholes Pj , P 2 represent the two small mirrors 
M 1 ( M 2 and the focal plane is represented by the screen B. The point 
Q on screen B is equidistant from P 1 ; P 2 . The star is a very distant 
source of finite angular size which illuminates the pinholes. The 
'image' of the star at Q is a circular patch of light which in a practical 
interferometer corresponds to the diffraction-limited image of a star 
seen in the small mirrors Mu M 2 . For simplicity we shall restrict the 
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discussion to the case of quasi-monochromatic light with a bandwidth 
Av and mean frequency v0 so that Avjv0<^ 1. We may now write the 
complex degree of coherence of the two beams reaching Q as 

yi20-) = | y i 2 0 - ) | e x p i ( « - 8 ) (4.1) 

where a is any initial phase difference between the waves leaving the 
two pinholes, and 8 is the phase difference at frequency v0 due to the 
path difference ( P i Q - l J

2 Q ) . F rom equation (3.19) we may now 
write 

' Q = ha + / » + VM^WMl COS (cc-S) (4.2) 

where 

s = ( 2 W \ ) ( i \ Q - P 2 Q ) 1 
and L (4.3) 

T = ( P 1 Q - P 2 Q ) / C J 

and I1Q, / 2 Q are the intensities which would be produced at Q by the 
two pinholes acting independently. 

Equation (4.2) shows that the distribution on the screen near Q 
varies sinusoidally with maxima given by 

<x-h = 2tmr, m = 0, ± 1 , + 2 . . . (4.4) 

This corresponds to a system of bright and dark fringes running across 
the 'image' of the star in a direction normal to the line joining the 
pinholes (fig. 2.2). The maxima and minima of these fringes are 
given by 

^ n a x = / l Q + 4 Q + 2 ( / 1 Q / 2 Q H y 1 2 ( r ) | ) 

/ m i „ = A « + / 2 „ - 2 ( / l u / 2 Q ) W | y 1 2 ( T ) | j { " > 

Therefore, if we follow the definition of fringe visibility used by 
Michelson, the fringe visibility V near to Q is given by 

v =1—T7— = ~T~n—lyi2(T)l- ( 4 - 6 ) 

nenrO •• max "•" in in • llQ"r A2Q 

In the simple case, where / m = 72y and T is small (r^XjAv), we may 
write 

V = |y 1 2 (0) | . (4.7) 
litMr Q 

Thus by measuring the visibility of the fringes it is possible to find 
the degree of coherence of the light at the two separated mirrors. 
Furthermore, if these measurements are carried out at several different 
mirror separations then, as we have already discussed in chapter 3.3, 
they yield the Fourier transform of the distribution of intensity across 
the star and hence the angular diameter of the star. 
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As an example, if the star presents a circular disc of uniform bright
ness, then the fringe visibility V(l observed with a mirror separation d, 
is given by 

V(l=(2J^ddj\))l{ndei\) (4.8) 

where Jt is a Bessel function of the first order and 9 is the angular 
diameter of the star. Th i s function is illustrated in fig. 2.3 and shows 
that the first zero, or disappearance of the fringes, occurs when 

rf=l-22A/0. (4.9) 

Hence, by measuring this critical value of d we can find the star's 
angular diameter (equivalent uniform disc) from equation (4.9). 

It is interesting to note from equation (4.6) that the fringe visibility 
yields only the modulus of the complex degree of coherence and not 
the argument. The argument can be found, at least in principle, by 
measuring the position of the fringes. Thus the fringes near the 
point Q (fig. 4.1) are displaced in a direction parallel to the line P 1 ( P A 

by an amount x, 

x = ( A 0 / 2 7 r ) ( A B / P 1 P 2 ) a (4.10) 

\\ here x is measured relative to the position of the fringes which would 
be produced by light of wavelength A 0 radiated in phase by Pj , P 2 . 
In practice such a measurement would be difficult, if not impossible, 
to make with a large interferometer because it requires that the instru
ment should be pointed at the star with extreme precision; furthermore, 
atmospheric scintillation introduces random phase-shifts into the 
light reaching the two small mirrors and causes the fringes to move 
about rapidly in the focal plane. 

4.1.2 The effects of path differences 
It was pointed out in chapter 2 that a serious disadvantage of 

Michelson's stellar interferometer is that the two light paths through 
the instrument must be maintained equal in length with a precision 
which is hard to achieve in practice. Consider first the effect of small, 
irregular path differences which are less than the mean wavelength of 
the light. If the light has a narrow bandwidth, Av/v0<g.\, the effect 
is to introduce a phase shift <f> into all frequency components of the 
light. Equation (4.10) shows that the fringe pattern will then be 
displaced by an amount proportional to the phase-shift and, when the 
relative phase at the two small mirrors is changed by TT, the bright and 
dark bands of the fringe pattern will be interchanged; if this happens 
rapidly compared with the observing time, the fringe visibility wil l be 
reduced. Consider, for example, light from a distant star falling on 
two points P ! , P 2 on the Earth. T o reach these points the light must 
traverse an irregular atmospheric layer which introduces phase shifts 
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<f>lt <f>2. If 712(1") is the complex degree of coherence between the light 
at P j , P 2 which would be observed in the absence of the atmosphere 
(cf>1 = (f>2 = 0), then it can be shown (e.g. Beran and Parrent, 1964) that 
YI2'(T) in the presence of the atmosphere wil l be 

(Vizir) > = YM exp i (fa -fa) (4.11) 

where the angle brackets denote time-averages. If now the phase-
shifts are random, uncorrelated and distributed with even probability 
over the range — TT to +77 , then 

<*i>=<&>= < M 2 > = 0 (4.12) 

and hence from equation (4.11) 

<y 1 2 '(r)> = 0. (4.13) 

Thus the time-average of y12'(T) tends to zero if it is taken over periods 
which are comparable with the characteristic period of the fluctuations 
in phase. It follows, for example, from equation (4.6), that the time-
average of the fringe visibility will also be reduced, but the significance 
of this effect wil l depend on exactly how the fringes arc measured and 
on the magnitude and frequency spectrum of the phase scintillations 
introduced by the atmosphere. 

We shall now consider the effect of introducing path differences or 
time delays which are significantly larger than a wavelength or period 
of the light. F rom equation (3.32) in the previous discussion of 
temporal coherence it follows that, if there is a relative time delay of T 
between the two beams of light reaching the focus, the coherence 
factor and therefore also the fringe visibility wi l l be reduced by the 
factor 

sin (TTAVT)I(TTAVT) (4.14) 

where Av is the optical bandwidth which we have assumed, for 
simplicity, to be rectangular. Thus, if we are observing fringes by 
eye at a mean wavelength of 540 nm, with a bandwidth of say 100 nm, 
the fringe visibility wil l decrease with time delay or path difference as 
shown in fig. 4.2. 

From this figure we can see that the fringes wil l disappear entirely 
if the path difference is about 3 fxm or the time delay is 10~" s. In 
practice this means that the instrument must be extremely stable 
mechanically and that it must be pointed at the star with extreme 
precision. For example, if we require that the fringe visibility is not 
significantly altered by pointing errors, then the maximum permissible 
path difference, for a 10 per cent loss in fringe visibility, is about 1 /xm, 
which corresponds to a maximum permissible pointing error of 
0-02 seconds of arc for a baseline of 10 m. It is, of course, possible 
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to make these requirements less stringent by reducing the optical 
bandwidth ; for example, if we reduce the bandwidth to 0-1 nm, then for 
a 10 per cent loss in fringe visibility we can tolerate a path difference of 
1 mm or a pointing error of 20 seconds of arc. However, a restriction 
of the optical bandwidth inevitably reduces the sensitivity of the 
instrument and it must be remembered that this loss cannot necessarily 
be compensated by simply increasing the mirror size. The maximum 
possible size of the mirrors is limited by the effects of atmospheric 
scintillation and must be less than the characteristic size of the scintilla
tion pattern on the ground. This characteristic size varies with site, 
weather conditions and zenith angle but is typically about 10 cm. 

'C10-15s> 
Path difference o r delay 

Fig. 4.2. Loss of fringe visibility due to delay or path difference in the arms of a 
Michelson interferometer (A —540 nm, bandwidth 100 nm). 

4.2 The Principles of an Intensity Interferometer using a Linear 
Multiplier 

4.2.1 The fluctuations in the output of a photoelectric detector 
In §3.5 we established the general principle that if the light at two 

separated points is partially coherent, then the fluctuations of intensity 
at these two points are also correlated. We shall now enquire how 
this general principle is applied in an intensity interferometer. 

Consider a plane wave of linearly polarized light which illuminates 
the photoelectric detector in fig. 4.3 and gives rise to an output current 
i(t). It has been shown by several authors (e.g. Mandel , Sudarshan 
and Wolf, 1964) that this system may be analysed in terms of a classical 
electromagnetic wave illuminating a 'quantized' detector and that 
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the probability of emission of a photoelectron p(t) is proportional to 
the classical measure of the light intensity I(t). Thus we may write 

p(t)At = oJ(t)At (4.15) 

where ,\ is the quantum efficiency of the detector. It is instructive 
to note that in this semi-classical picture we do not need to invoke the 
photon. A discussion of this point has been given by several authors 
(e.g. Lamb and Scully, 1969). 

Plane wava of l ight 

Photoelectr ic 
detector 

i i ( t ) 

L o w - p a s s f i l ter 
L-i-J ( O —~ A f ) 

V 
output 

I'ig. 4.3. A photoelectric detector illuminated by a plane wave of light. 

It follows that the fluctuations in the output of a photoelectric 
detector may be treated as the fluctuations in the output of a simple 
square-law detector in which the output current i(t) is proportional 
to the square of the electric vector of the input wave, so that 

i{t) = ael{t) (4.16) 

where e is the charge on the electron. If the incident light has a uniform 
spectral density G(v) over a narrow band Av (fig. 4.4 a), then we may 
use the conventional theory of the response of a square law detector to a 
random noise input (e.g. Rice, 1944) to show that the spectral density 
of the fluctuations in i(t) is as illustrated in fig. 4.4 b. The low-
frequency part of this spectrum extends from zero to Av and represents 
the difference frequencies between Fourier components of the light wave. 
The high-frequency part is centred on 2v0 and represents the sum 
frequencies; in the present discussion these high frequencies have no 
significance. Although in principle the low-frequency spectrum 
extends to extremely high frequencies, and there is experimental 
evidence that frequencies as high as 10 1 0 H z are preserved in the 
photoelectric current (Forrester, Gudmundsen and Johnson, 1965), 
we are concerned here with the practical case where the electrical 
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bandwidth is limited, by the response time of the photoelectric detector 
and by the bandwidth of the circuits which follow it, to frequencies 
which are very much less than Av and are of the order 10 8 H z . In 
fig. 4.5 these limitations (see discussion in §4.2.2) are represented by a 
low-pass filter which, for simplicity, has unity gain and a rectangular 
bandpass from 0 to A / where A / < c A v . 

(b) 

spectrum of 
input to 
square -law 
d e t e c t o r 

VQ-(Av/2)' vD 'v0+<&v/2) 
f requency of light (V) -

spectrum of 
output of 
s q u a r e - l a w 
d e t e c t o r 

2 V . + A y 

Fig. 4.4. 

O AV 2 D 0 - A V 2 V Q 

Frequency of electr ical f luctuat ions ( f ) — 

The spectrum of the electrical fluctuations in the output of a square-law 
detector exposed to light. 

Since A/<^ A v the spectral density W(f) of the 'rectified fluctuations' 
in the light is roughly uniform at the output of the filter and it can be 
shown (e.g. Rice, 1944) that 

W(f) = 2iTK^Av (4.17) 

where i1)V is the direct current component due to the light. We shall 
call the fluctuations wave noise and at the output of the filter their mean 
square value is 

je*=W(f)Af=2ilK?Afl\v. (4.18) 

In addition to this wave noise there wil l be the classical shot noise 
due to the finite charge on the electron and the stochastic association 
between photoemission and the incident light where 

Jn=2eiIK.Af. (4.19) 

A more detailed analysis (Hanbury Brown and Twiss, 1957 b) confirms 
that we simply add the shot and wave noise to find the total noise/ 2 at 
the output of the low-pass filter, so that 

7=17 + 77= 2eimAf+ 2ixn

 2 A / A . ' = 2 « U ( A / [ 1 + r] (4.20) 

where r = im.jeAv and is the number of photoelectrons per unit time 
in unit optical bandwidth. 
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T o summarize, equation (4.20) shows that the fluctuations in output 
current from a photoelectric detector, exposed to a plane wave of light, 
are greater than classical shot noise. The additional component is 
due to the fluctuations in the incident light wave and we call it wave 
noise, 

4.2.2 The correlation between the fluctuations in the output currents of 
two photoelectric detectors 

In §3.5 we found that the fluctuations in the intensity of the light 
at two separated points are correlated when these points are illuminated 
by partially coherent light, and for unpolarized light (equation (3.43)), 

< A / 1 ( 0 A / 8 ( / + r) > = \Ij2\y12{r)\\ (4.21) 

Since the wave noise in the output of a photoelectric detector represents 
the 'rectified fluctuations' in the incident light, it is to be expected that 
the wave noises from two detectors, exposed to partially coherent light, 
are correlated, whereas the shot noises are not. 

L i g h t 

v 
< - -

'1 

Photoelectr ic 
d e t c c t o r s \ ^ 

L o w - p a s s 
^ f i l t e r s ^ 

A i,(t) \> 

Mul t ip l ie r 

C o r r e l a t i o n 
— m e t e r 

Fig. 4.5. Outline of an elementary intensity interferometer. 

Consider the elementary intensity interferometer shown in fig. 4.5, 
which consists of two photoelectric detectors, followed by identical 
low-pass filters feeding a linear multiplier. We wish to know how the 
averaged output of this multiplier depends upon the coherence of the 
light. We must first remember that in equation (3.43) the answer to 
this question is given in terms of the correlation between the instan
taneous fluctuations of intensity, whereas a practical detector has a 
finite response time. The process of photoelectric emission must, 
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in our semi-classical picture, be regarded as taking an average of the 
intensity of the light wave over a few cycles (e.g. Mandel , Sudarshan 
and Wolf, 1964). Furthermore, there is inevitably some finite 
response time due to capacity or dispersion of transit times in the 
detector, and this wi l l clearly average over many cycles of the light. 
Typical ly the response time of a complete photomultiplier lies in the 
range 0-5-5 ns and so, in effect, the output is an average of the light 
intensity over roughly one mill ion cycles. Mandel (1963) treats this 
averaging process by writing the current i(t) as 

i{t) = {aelT) J I{t + f)dt' (4.22) 
- 7'/2 

where T is the time over which the intensity is averaged. He then 
shows that for unpolarized light the correlation between the fluctuations 
in i{t) is 

<A.- 1(0Ai a(0> = («VA/8/2r«) f'l \yn(t'-t")\*dt'dt". (4.23) 
- 7'/2 

In the present case, where the spectrum of the light is identical in the 
two detectors, we may write 

yi2(T) = yM(0)y 1 1(T) (4.24) 

and assuming that T$>l/Av equation (4.23) may be written 

<Ai, (0Ai 8 ( l )> = i«VA^|yi2(0)| 2(T 0./r) (4.25) 
where 

00 

r0= S\Vn(r)\2dt. (4.26) 
— 00 

Thus the effect of averaging over a resolving time T is to reduce the 
the correlation by a factor TJT where T 0 is the coherence length of the 
light. It is simple to show analytically (e.g. Mandel , 1963) that we 
may represent this resolving time T by a low-pass filter of bandwidth 
A / ( « l / T ) and from equation (3.33) it follows that we may express 
the coherence time T 0 in terms of the optical bandwidth A V ( S K 1 / T „ ) . 
For the case of simple rectangular bandwidths it can be shown that 
T 0 /T= 2A//Ai» and therefore we may write equation (4.25) as, 

<Ai 1 (r)Ai 2 (0> = « 2 e 2 / 1 / 8 | y i 2 ( 0 ) | a ( A / / A v ) . (4.27) 

It follows from this discussion that we may represent the combined 
response time of the photocathode, photomultiplier and the circuits 
between the output of the photomultiplier and the linear multiplier by 
the simple low-pass filter shown in fig. 4.5. In this diagram the 
photoelectric detectors and the multiplier have zero response time and 
the low-pass filters have unity gain and zero phase-shift over a band
width from 0 to A / . 
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We may now rewrite equation (4.27) as 

7(d) = (Ai1(t)&i2(t)) = *AaoL*n*\yD(0)\*Av&f (4.28) 

where c(d) is the correlation or time-average of the multiplier output 
when the detectors are spaced by a distance d; A is the area of each 
detector; n is the intensity of the light in photons per unit optical 
bandwidth per unit area and unit t ime; and |yd.(0)| is the degree of 
coherence corresponding to T = 0 and a baseline d. 

From equation (4.28) we see that the correlation observed at any 
given baseline (d) is proportional to |y</(0)|2 the square of the modulus 
of the complex degree of coherence. From equation (4.6) it is there
fore also proportional to the square of the fringe visibility in Michelson's 
stellar interferometer. The theoretical variation of correlation <'(<.• i 

with baseline (mirror separation) is shown as a broken line in hg. 2.3 
for the case of a star with a circular disc of uniform brightness. 

4.2.3 The signal-to-noise ratio 
The precision with which the correlation c(d) can be measured is 

limited by fluctuations or noise in the multiplier output. Th is noise 
is due principally to statistical fluctuations in the product of the shot 
noises in the two channels. As we shall see in §4 .3 .1 , under practical 
conditions wave noise is small compared with shot noise. In the simple 
case where the two detectors are identical we may take the shot noises 
in the two channels to be equal and it can be shown (e.g. Hanbury 
Brown and Twiss, 1957 b) that the r.m.s. noise N in the multiplier 
output is 

N(T0) = v / 2eMaKAv(A/ /7 ' ( , ) 1 / 2 (4.29) 

where T 0 is the interval over which the multiplier output is averaged. 
In the same interval the correlation is c(d)T0, so that from equations 
(4.28) and (4.29) the r.m.s. signal/noise ratio is 

(SIN)^ = c(d)TOIN(To) = A«n\yd(0y(AfT0l2y*. (4.30) 

Equation (4.30) shows that the signal/noise ratio is directly propor
tional to the light-collecting area A of the detectors and to the quantum 
efficiency a, and that it is proportional to the square root of the electrical 
bandwidth (A/ ) 1 - 2 and observing time TJ12. It is interesting to note 
that it is independent of the optical bandwidth Av but is directly 
proportional to n the number of photons incident on unit area in unit 
time and in unit optical bandwidth; it should be noted that this latter 
quantity is a property of the source and not of the equipment. 

We may use equation (4.30) to make a rough estimate of the signal/ 
noise ratio of the Narrabri stellar interferometer. Taking .4 = 30 m 2 , 
« = 0-20, A = 430nm, A / = 1 0 0 M H z and J T 0 = 1 h, the signal/noise 
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ratio when observing an unresolved ( y d ( 0 ) = l ) zero-magnitude star 
in the zenith (nx5 x 10~ 5 photons m ~ 2 s _ 1 H z - 1 ) 

c(^)/ iV=1272 in 1 hour (4.31) 

where £ represents the sum of a large number of small losses in the 
equipment (such as loss in the optical system, excess noise in the 
correlator, etc.) and has a value of about 0-2. 

Equation (4.31) illustrates the most serious disadvantage of an 
intensity interferometer, which is, that it requires very large light 
collectors, even for bright stars. In fact if we take 3/1 in 1 hour as the 
lowest workable signal/noise ratio,, then we are limited to stars brighter 
than about magnitude +2, despite the fact that the light-collecting 
area of each detector has the very large value of 30 m 2 . 

4.2.4 The effects of path difference or time delay 
We have already noted that the principal disadvantage of Michelson's 

stellar interferometer is that it is seriously affected by very small path 
differences from the source to the focal plane through the two halves 
of the instrument. It must therefore be constructed and guided with 
extreme precision and is seriously affected by atmospheric scintillation. 
The main reasons for the development and success of the intensity 
interferometer is that it overcame this problem almost completely. 

L i g h t 
s o u r c e 

Movable carr iage 
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delay 

L o w - p a s s 
f i l t e r 

Mul t ip l ier L o w - p a s s 
f i l t e r 

5C o r r e l a t i o n 
m e t e r 

Fig. 4.6. Intensity interferometer with half-silvered mirror. 

Consider the arrangement in fig. 4.6 in which an intensity interfero
meter is used to measure the coherence between two completely 
coherent beams of light from a half-silvered mirror. A plane wave of 
quasi-monochromatic light (Av/v 0 <| l ) from a distant 'point' source 
falls on a half-silvered mirror M . It is then directed to the two 
photoelectric detectors D j , D 2 which are arranged to be perfectly 
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coincident as seen from the direction of the source. The outputs of 
these detectors are limited in frequency by two identical low-pass niters 
with unity gain over the band O — A / . The output of these filters is 
applied to a linear multiplier with unity gain, and the output of the 
multiplier is averaged and recorded. In one channel there is a variable 
electrical delay T ; it is also possible to move detector D j parallel to the 
direction of the incident light. 

Consider first the case when M D j = M D 2 . The output from the 
multiplier, the correlation c(0), is then given by equation (4.28) as 

c(0) = e*A*<Ai2AvAf\y0(Q)\*. (4.32) 

If now we move detector D j through a very small distance x, such that 
x<\, parallel to the incident light, then a phase-shift <f> = 2-nxl\a is 
introduced into all frequency components of the light at that detector. 
Under these conditions the complex degree of coherence y 0(0) is 
modified to y 0 ' (0) where 

yo'(O)*yo(O)exp(i0). (4.33) 

From equation (4.32) we can now see that a small path-difference or 
phase-shift has no effect on the measured correlation because the 
intensity interferometer measures the modulus of the complex degree of 
coherence, and is therefore unaffected by changes in the phase or 
argument. It follows that random changes of phase, due for example 
to the atmosphere, have no effect on the measured correlation. 

We turn now to the effect of longer path differences or time delays. 
Consider first the effect of setting M D , = M D 2 and introducing an 
electrical delay T into one channel. Th is is a classical problem in the 
theory of random noise and we may use the Wiener Khinch in theorem, 
or simply an analogy with equation (3.30), to write 

X' CO 

C(T)/C(0) = J e x p ( - 2mfr) dfl J G H ( / ) if (4.34) 
(J (I 

where G12(f) is the mutual spectral density of the electrical fluctuations 
at the outputs of the two filters. In the simple case that we are 
considering, where the filters are identical and have a uniform band-pass 
from 0 to A / , equation (4.34) reduces to 

c( T)/c(0) = sin(7rA/T)/(7rA/T). (4.35) 

Thus the variation of correlation with time delay is given by the 
Fourier transform of the spectral distribution of the electrical fluctua
tions applied to the multiplier or, more precisely, by the transform of 
their mutual or cross-spectral density. 

A n alternative way of introducing a time delay T is to move one 
detector through a distance x parallel to the incident light. Such a 
path difference is equivalent to a time delay, provided two conditions are 

52 



satisfied. A first condition is that there must be no significant dis
persion of velocity in the medium over a light bandwidth equal to the 
highest electrical frequency (A/) passed by the filters. We may express 
this requirement as 

x«eA/(A«A/) (4.36) 

where An is the change in refractive index of the medium per unit 
optical bandwidth. 

A second condition is that the relative displacement of the detector 
must not alter the spatial coherence ; that is to say, it must not alter the 
difference in path length from points on the source to the detector. It 
is clear that this condition is satisfied in observation of stars if 

x<^x2;e2 (4.37) 

where 9 is the apparent angular size of the star. 

0 1 2 3 4 5 nanoseconds 

Path di f ference or delay 

Fig. 4.7. Loss of correlation due to path difference or differential delay in the arms 
of an intensity interferometer (bandwidth = 100 MHz) . 

Thus, provided the two conditions outlined above are satisfied, we 
may use equation (4.34) to find the effect of the path differences or 
electrical delays on the measured correlation. F ig . 4.7 illustrates this 
effect for the practical case of an intensity interferometer with a 
rectangular bandwidth of 100 M H z . It shows that there is a 10 per 
cent loss of correlation for a time delay of or a path difference of about 
30 cm. If now we compare these figures with those for a Michelson 
interferometer then, from figs. 4.2 and 4.7, we see that the intensity 
interferometer is far less sensitive (roughly 10 5 times) to the effects of 
path difference or time delays. The practical consequences of this 
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rather surprising result are first, the comparative ease of building and 
operating a stellar intensity interferometer with the very long baselines 
(hundreds of metres) which are required to resolve a reasonable 
sample of the hotter types of stars and secondly, as we shall discuss 
further in §5.8, the fact that the measurements are not significantly 
affected by atmospheric scintillation. 

4.3 The Principles of an Intensity Interferometer using a Coincidence 
Counter 

4.3.1 Fluctuations in the output of a photon-counting detector 
In this section we shall take a brief look at an alternative form of 

intensity interferometer based not upon the linear multiplication of 
:he fluctuations in the output currents of two detectors but upon 
.ounting coincidences between the arrival times of individual photons. 
Such an instrument appears to have no practical application to 
astronomy, nevertheless the discussion of its principles and the 
experimental tests described later played a useful part in establishing 
and clarifying the theory of intensity interferometry. 

Consider first a single photoelectric detector illuminated by a plane 
wave of linearly polarized quasi-monochromatic (Av/V 0 <| l ) light. 
Let us suppose that the gain of this detector, for example, a photo-
multiplier, is such that the pulses in the output current due to single 
photons can be counted. If the intensity of the light at the photo-
cathode, averaged over a few cycles, is I(t), then (see §4.2.1) the 
probability that a photoelectron is emitted in a short time dt is 
al(t)dt, where -\ is the quantum efficiency assumed to be constant over 
the optical bandwidth Av. The mean number of photoelectrons (n) 
which wil l be counted in an interval T is therefore, 

n = *l'T (4.38) 

and it can be shown (e.g. Purcell 1956, Mandel , 1963) that the variance 
(An) 2 in this count wi l l be 

( A ^ ) 2 = w(l + n ) . . . T<^l /Av (4.39) 
and 

(A70 2 =n( l + WT0/T)... 7 > 1 / A v (4.40) 
where 

T0= f | y u ( r ) | 2 d r (4.41) 
- CO 

and yn(r) is the normalized auto-correlation function of the incident 
light defined by 

yn(r) = JG(V) exp ( - 27rivr) dv/jG(v) dv (4.42) 
(I 0 
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and G(v) is its spectral density. In this case we may identify r 0 with 
the coherence time of the light (see equation (3.33)) and, if the spectral 
density is uniform over the optical bandwidth Ay, write 

(An)2=n(l + nlAvT). (4.43) 

Equations (4.39) and (4.40) express the fact, noted in §4.2 .1 , that 
the fluctuations in the output current of a photoelectric detector 
cxpuscd to a plane wave of light are greater than the expected value 
(An' - ft) in a simple random stream. This excess noise is usually 
ver\ small; for example, if the source of light produces 10 6 photo-
elertmns per second and has a bandwidth of 10nm at 500nm, then, 
in a resolving time of 1 ns, the excess noise (njAvT) increases the 
simple random noise (n) by 1 part in 10 7. For this reason the excess 
noise in the output of a photoelectric detector is hard to measure 
directly. 

In the previous discussion in §4.2.1 we identified this excess noise 
as wave noise due to fluctuations in the intensity of the incident light, 
but in the present context, where we are concerned with counting 
discrete photoelectrons, it is more appropriate to use the 'particle' 
picture and regard the additional noise as being due to the 'bunching' 
of photons which obey Bose-Einstein statistics. Intuitively one can 
see that this bunching must increase the classical shot noise which is 
due to the purely stochastic association between the emission of a 
single photoelectron and the light intensity. Put simply, the tendency 
of photons to bunch, following Bose-Einstein statistics, increases the 
output fluctuations. 

In this connection it is instructive to evaluate the probability of 
obtaining two counts separated by a time interval T. Mandel (1963) 
shows that, for a beam of polarized light, the conditional probability 
pv(r) d r of obtaining a second count T sec after a first is 

/ » , ( r ) d T = a / [ l + | y i l ( T ) | 2 ] d r . (4.44) 
Because 

| y „ ( T ) | * l when r ^ l / A v (4.45) 
and 

|yN(T)|%0 when T >1/Av (4.46) 

it follows from equation (4.44) that 

pC(T)dTx2aIdT when T<§1/AV (4-4 7) 
and 

/ > , . ( T - ) d T « « / d T when rpl/Av (4.48) 

Thus, when the resolving time is very short (T^I/AV), the conditional 
probability of detecting a second photoelectron increases to twice the 
value (a /d r ) expected for a simple random stream of independent 
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particles; on the other hand, when the resolving time is long (T pl/Av), 
the conditional probability is simply equal to that forthe simplerandom 
stream. The variation of this conditional probability with the time 
interval T is illustrated in fig. 4.8 for a plane polarized wave of light 
with a Gaussian spectral profile of width A i \ The conditional 
probability has been normalized to that for a stream of independent 
particles. Mandel (1963) points out that this bunching, also by a 
factor of 2, is exhibited by the density fluctuations in any boson gas. 

2 ^ 

j I ' ' ' ' 
0 2 0 4 0 6 

T i m e de lay 

Fig. 4.8. The conditional probability pi(r)dT of detecting a second photoelectron after 
an interval T in a plane wave of linearly polarized light with a Gaussian spectral 
profile of width A i \ The probability is normalized by the expected value 
(al dr) for a random stream of independent particles. From Mandel (1963)-

4.3.2 Coincidence-counting 
Consider the arrangement shown in fig. 4.9. The two photo

multipliers, P 1 ; P 2 are separated by a distance d and illuminated by 
unpolarized quasi-monochromatic light (Av/v0<^ 1). The two counters 
N 1 ( N 2 register the number of photoelectrons in each channel ami t ie 
counter Nc registers a coincidence when two pulses arrive within a 
time Tc. The average counting rates are 

It can be shown (e.g. Mandel, 1963, Hanbury Brown and Twiss, 
1957 c) that the coincidence rate NC is 

^ c = ^ [ 2 r c + i | y ( i ( 0 ) | 2 f | y n ( T ) | 8 d r ] (4.50) 
— T(! 

where it has been assumed for simplicity that the spectral distribution 
of the light at the two detectors is identical and that their quantum 
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efficiencies are constant over the optical bandwidth. If the resolving 
time TC is either much longer than the coherence time of the light (1 / A v) 
or much shorter, equation (4.50) can be simplified as follows: 
when 

2 r c >1/Ai/ 

NC = />WT 0[1 + £M0)| 2T 0/2TO] (4.51) 
and when 

2T c<^1/A^ 

.V (. = :V 1 A' 2 2r c . [ l + . 2 |y r f(0)| 2] (4.52) 

where T„ = IjAv as defined previously in equation (4.41). 
Equations (4.51) and (4.52) show that, when there is no coherence 

between the light at the two detectors (\ya\ = t>)> the coincidence rate 
is NIN22TV, which is the expected rate for two uncorrelated streams of 
photoelectrons. However, when the light is coherent (|y<j| > 0), there 
is an excess coincidence rate which depends directly on the square of 
the degree of coherence. It is therefore possible, at least in principle, 
to measure the angular distribution of intensity across a source by 
observing the excess coincidence rate as a function of the spacing 
between the detectors. 

Light 

Photomultipliers 

Coincidence-counter* r 

© <5) © 
C o u n t e r s 

Fig. 4.9. A coincidence-counting intensity interferometer. 

It is interesting to note that when the resolving time is short 
(2TR < 1/Ai/) the coincidence rate is increased by | for unpolarized 
l ight; for linearly polarized light this factor would be 2, as one would 
expect from fig. 4.8. In the more practical case where the resolving 
time is long compared with the coherence time (2T,.>1/AV), the 
excess coincidences are simply reduced by the factor T0/2TC. 
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4.3.3 The signal-to-noise ratio 
Taking the practical case appropriate to the measurement of stars, 

where the resolving time is long compared with the coherence time 
(2T ( . > 1 / A V ) , the r.m.s. signal/noise ratio is given by the ratio of the 
number of excess coincidences in an observing time T0 to the r.m.s. 
fluctuations in the random coincidence rate. 

The number of random coincidences in a time T0 is cH(T0), where 

CJI(T0) = N1N22TCT0. (4.53) 

Hence, from equations (4.51) and (4.53), it can be shown that the 
signal/noise ratio is 

( S / A 0 R M S = miM2Y:*ro(Tol2T(.y*\yd(0)\*. (4.54) 

A comparison of equations (4.30) and (4.54) shows that the 'linear 
multiplier ' and the 'coincidence counter' give about the same signal/ 
noise ratio when they receive the same number of photoelectrons per 
second per unit optical bandwidth (Aan), provided that the resolving 
time r 0 of the coincidence circuit is roughly equal to the reciprocal 
electrical bandwidth (1/A/) of the linear-multiplier circuit. However, 
it is very difficult in practice to apply the 'coincidence-counting' 
interferometer to the measurement of stars although, as we shall see 
in § 6.2, it can be made to work in the laboratory. The difficulty is due 
to the finite resolving times of practical detectors and counters which 
severely limit the number of photoelectrons per second that can be 
counted separately. As an example, consider again the use of an 
interferometer to observe an unresolved zero-magnitude star in the 
zenith where n = 5 x 10~ 5 photons s _ 1 m ~ 2 H z - 1 and y<j(0)=l. In 
§ 4.2.3 it was shown that the signal/noise ratio in a 'linear-multiplier' 
system would be 25/1 in one hour's observation. In principle we 
can achieve the same result with the coincidence-counter by making 
the resolving time T(.X 10 ns but, unless we greatly restrict the optical 
bandwidth, the primary photoemission current wil l be so great that it 
wi l l be impossible to count individual photoelectrons. Thus, if the 
maximum possible counting rate is 10 7 photoelectrons per second, the 
optical bandwidth cannot exceed 3 x 10 1 0 H z or about 0-02 nm. 
Although such a narrow bandwidth can be achieved by rather elaborate 
filters it would be immensely difficult to apply them to a stellar inter
ferometer. The necessary filters would introduce an unacceptable 
loss of light in the pass-band; they would be difficult to match with the 
required precision; and they would demand a light beam with better 
collimation than can be achieved with very large and crude reflectors. 
In practice this means that coincidence-counting interferometers can 
only be applied in the laboratory to observations of intense sources of 
light with narrow bandwidths and they have no apparent application 
to astronomy. 
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CHAPTER 5 
the theory of a practical stellar intensity interferometer 

5.1 Introduction 
In the preceding chapters we have reviewed the general principles of 

an intensity interferometer and derived formulae for the correlation, 
noise, etc. However, the assumptions underlying these formulae are 
too idealized for them to apply to a practical instrument. In practice 
it is necessary to take account of a variety of factors; for example, the 
apertures of the light detectors may have a finite size, the quantum 
efficiency and spectral response may be different at the two photo-
cathodes, there may be a loss of light in the optical system and the light 
may be partially polarized; furthermore, the electrical frequency 
response of the photomultipliers and amplifiers may not be identical 
in the two channels, there may be excess noise introduced by the 
electronics and there wil l inevitably be some loss of correlation in the 
whole system. In this chapter we shall set out working formulae 
from which the performance of practical interferometers has been 
calculated. 

5.2 Correlation between Small Apertures 
It has been shown (Hanbury Brown and Twiss, 1957 c) that, in the 

case where the apertures of the light detectors are small, we must 
rewrite the simple expression for correlation c(d) in equation (4.28) as 

cJd) = e*A1Aifl^)K*(Vo)g\Vo)n\v0)oB^^ (5.1) 

where AltA2 are the areas of the two light detectors; (1— e) is the 
fraction of the correlation lost in the electronics; BQ is the effective 
bandwidth of the light defined by 

00 CO 

B0 = [ J ̂ ( ^ ( " W " ) df j" <*t(v)g2(v)na(v) dvy 2 /«K)§<(v 0 )n(v 0 ) (5.2) 
0 0 

where 
« i ( " ) = « i 0 ( " ) + »i6(»') (5-3) 

n2(v) = n2a{v) + n2h(v) (5.4) 

' ^ ( ^ ^ ( " o ) " ^ ^ ) = a l ("o) a !( , '«kl( ' 'ok2( 1 'o)»l( 1 'o)"2( 1 'o) (5-5) 
and n(v) is the number of quanta incident in unit time and bandwidth 
on unit area of the detectors; g(v) is the transmittance of the optical 
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system at a frequency v; «(v) is the quantum efficiency at a frequency v 
and v0 is the mid-band frequency of the light reaching the photo-
cathodes; the subscripts a, b refer to two orthogonal directions of 
polarization; a is a normalized spectral density function and is 
defined by 

" = f « i(^ki(> ' )" 1 (0« 2 (0 o

7

2 (> ' )"2(> ')d. / f i n C t

2 ( , 0 )^(r 0 )« 2 ( , 0 ) (5.6) 
o 

and the polarization factor /?0 is defined by 

/3o = 2 [« i a (v )n 2 ( l (^ ) + n l f t ( V ' ) n 2 f t (v ) ] /« 1 (^)K 2 (v ) (5.7) 

so that /9„ = 1 when nn(v) — nb(v) as in the case of randomly polarized 
light. The symbol T2(d) is called the normalized correlation factor 
and is defined by 

f V ) = ^ M 0 ) (5-8) 
where c(d) and c(0) are the correlations with baselines d and zero 
respectively under identical conditions of light flux and observing time 
and where 

CO 

J | y < * ( " ) | 2 o : l ( ' ' k l ( » ' ) a 2 ( ^ k 2 ( ' ' ) K a ( ^ ) " 2 a ( » ' ) + " l b ( > ' ) " 2 6 ( ' ' ) ] 

r2(rf)= <L_ 
0 

(5.9) 

and |y (j(i') | is the degree of coherence at baseline d and frequency v. 
The effective cross-correlation electrical bandwidth of the correlator 
bv is defined by 

l ^ m a x | 2 * v = H t ^ ( / ) ^ 2 * ( / ) + ^ * ( / ) ^ ( / ) ] d / (5.10) 
0 

where | F m a x | is the maximum value of i[F1(f)F2*(f) +F^i^F^f)] 
and F(f) is the gain of each channel at a frequency/ and includes the 
photomultipliers. 

5.3 Correlation between Large Apertures 
When the aperture of the light detectors is a significant fraction of 

the baseline necessary to resolve the source, then the light is no longer 
fully coherent across the individual apertures. Th is problem has 
been discussed by Hanbury Brown and Twiss (1957 c). They show 
that the correlation is reduced by the partial coherence factor A and 
that r2(d) in equation (5.1) can be written AT2(d). 

The general expression for A is very cumbersome and is not worth 
reproducing here; it depends upon the angular size and shape of the 
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source, the size and shape of the detectors and on the spectral distribu
tion of the light. However, we can simplify the discussion by restric
ting it to the practical case where the bandwidth of the light is so 
narrow that both r2(d) and A may be taken as constant over the light 
bandwidth and we may write 

ATV) = A(V 0)HV 0,^). (s.ii) 
In practice A(i> 0)F 2(v 0, d) must be evaluated for each specific case by 
means of a computer. The procedure is to consider the detector to be 
divided into a number of small elementary areas. The correlation 
between an elementary area A on one detector and another elementary 
area B on the other detector is then calculated for a given value of d. 
This calculation takes into account, of course, the length of the baseline 
A B and the position angle of A B with respect to the source. The 
calculation is then repeated for every possible pair of points on the two 
detectors. Finally the total correlation is found for all possible pairs 
of points and, after normalizing, yields A ( v 0 ) r 2 ( v 0 , d). 

As an example, if (xx,yx) and (x2,y2) represent points on two detectors 
whose centres are separated by a distance d, then for a source with a 
uniform circular disc of angular diameter 6 

A(v0)r*(v0,d)= - J ^ J f f j p ^ J dx 1 d* a dy 1 dy, (5.12) 

where 
| = (ndvjc) [(Xl - ,v 2) 2 + (y, - j y , ) 2 ] 1 ' 2 (5-13) 

and the integral is taken over the areas Au A2 of the detectors. F i g . 
5.1 (a) shows how the partial coherence factor A varies with the size 
of the detectors in the case where a circular source of uniform surface 
brightness is viewed by two identical circular detectors with a diameter 
D. F ig . 5.1 (b) shows the normalized correlation factor r 2 ( v 0 , d) as a 
function of baseline length d for the same configuration; the shape of 
this curve depends slightly on A and is shown for two cases, small 
apertures A ( v 0 ) = 0 -99 and large apertures A ( v 0 ) = 0 -90 . 

T o summarize, in the general case where the aperture of the detector 
is large enough to resolve the star partially, the correlation is given by 

^ ) = e M ^ 2 i 3 U A ( v j r 2 ( v 0 , J ) c x 2 ( v 0 ) ^ ( v 0 ) « 2 ( , 0 ) f i o e 6 v | F m a x | 2 (5.14) 

where A ( v 0 ) the partial coherence factor and T2(v0,d) the normalized 
correlation factor must both be evaluated for the particular size and 
shape of the source and light detectors. In the simpler case where the 
aperture of the detectors is small ( A ( v 0 ) = l ) , T2(v0,d) is simply the 
square of the degree of coherence and, as we have seen in §3 .3 , it is 
therefore proportional to the square of the modulus of the normalized 
Fourier transform of the angular distribution of intensity across the 
equivalent line source. 
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Fig. 5.1. (a) The variation of the partial coherence factor A(v0) with the aperture of 
the detectors, calculated for a circular source of angular diameter 6 viewed 
by two identical circular apertures with diameter D. (ft) The variation of the 
normalized correlation factor r ! ( » o , d) with detector separation, calculated for a 
circular source of angular diameter 6 viewed by two identical apertures with 
A(>0) = 0-99 ( ), and A(>-u) = 0-90 ( •). From Hanbury Brown and 
Twiss (1958 a). 
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5.4 The Noise 
T o calculate the r.m.s. uncertainty N(T0), or noise, in the correlation 

measured over an observing time T D , it is necessary to rewrite equation 
(4.29) as, 

N(T0)=- e-iA^y M " o t e ( " o M " o ) W ( / * - +S)(1 + « ) 

( 2 M / ^ o ) , 2 | ^ m a x | 2 (5-15) 

where /j-Kfi— 1) represents the excess noise introduced by the photo-
multiplier chain, and fx is approximately equal to the multiplication 
factor of the first stage; (1 +S) allows for excess noise introduced by 
the correlator and is the ratio of the actual noise at the output of the 
correlator to the noise due to the outputs of the photomultipliers; 
(1 + a) allows for the presence of stray light and dark current, and is the 
ratio of the total anode currents of the photomultipliers to the anode 
currents due to light from the source; rj is the normalized spectral 
density of the cross-correlation frequency response of the two channels 
of the correlator including the frequency response of the photo
multipliers, and is defined by 

V=J\FiVW(f)\ d / / * v | ^ m a x | 4 - (5-16) 
o 

5.5 The Signal-to-Noise Ratio 
If we compare equations (5.14) and (5.15) we see that both the 

correlation c(d) and the noise N(T0) are linearly proportional to 
| F I 1 1 ] I X | 2 and their ratio is independent of the gain of the equipment. 
It is therefore convenient to work in terms of the signal/noise ratio 
(SjN). From equations (5.14) and (5.15) the r.m.s. signal/noise 
ratio, for the general case where the apertures of the light detectors are 
large and the correlation is integrated for a time T0, is given by 

(SIN)&ILS=7(dJT0IN(T0) 

= ( A ^ y ^ i v M ^ H ^ M ^ o , d)e /V(0*-1) / /*) 

( A v r 0 / 2 , ) W / ( 1 + « ) ( 1 + S ) (5.17) 

5.6 The Maximum Possible Signal-to-Noise Ratio 
Equation (5.17) shows that the signal/noise ratio is proportional to 

(AyA2)vi where Alt At are the areas of the light detectors. A t first 
sight it would therefore appear possible to increase the signal/noise 
ratio on any source by simply increasing the size of the detectors. 
However, this is not so; as the size of the detectors is increased they 
start to resolve the source and the partial coherence factor A(i>0) 
decreases. At the limit when the source is completely resolved by the 
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detectors, the signal/noise ratio approaches monotonically a value 
determined by the effective black-body temperature of the source at 
the appropriate wavelength and is independent of the source shape. 
For an interferometer of the type described in §6 .1 , in which the light 
is divided between the two detectors by a half-silvered mirror, it has 
been shown (Hanbury Brown and Twiss, 1957 c) that the maximum 
possible signal/noise ratio, in an observation of duration T„ of a source 
with a black-body temperature 0 O at a frequency v0, is 

/ e , A A = K " . ) ^ ( a ( 1 + a ) ( 1 + ^ ] ( ( ^ l ) f c ) ( W 2 i > ) "  
w ; m u e x p [ A v o / ( A 0 o - l ) ] 

(5.18) 

It is interesting to note that, when the source is completely resolved 
by the detectors and equation (5.18) applies, the signal/noise ratio 
depends only on the temperature, and the equipment is, in effect, a 
pyrometer. A n important consequence is that there is a lower limit 
to the temperature of a source which can be measured with an intensity 
interferometer. As we shall note in § 11.1, this fact limits the range of 
spectral types of stars which can be usefully observed. 

5.7 A Theoretical Estimate of the Effects of Cerenkov Light 
Possible sources of correlation when observing a star with an 

intensity interferometer are the Cerenkov light pulses produced by 
cosmic rays entering the Earth's atmosphere. Roughly speaking, 
the primary cosmic ray produces a shower of particles which in turn 
produce a pool of light with a radius of the order of 100 m and a duration 
of the order of 10 ns at the Earth's surface. If both reflectors lie 
within this pool and the light is produced within their field of view, 
then correlated pulses wil l reach the multiplier of the correlator. 
Unless the correlation due to these pulses is small compared with that 
from the star, it wi l l produce errors in the measurements of angular 
size. It is therefore important that an estimate of this unwanted 
correlation should be made and that the results should be confirmed, 
if possible, by experiment. 

A n estimate has been published by Hanbury Brown, Davis and 
Allen (1969). They took p(nc). dnc. dt. dO to be the probability that 
a cosmic-ray event occurs in a time dt such that, in the absence of 
atmospheric extinction, n(. photons would reach unit area of both 
reflectors in unit frequency band from a solid angle dQ of sky. They 
further assumed that these photons arrive in a time interval rv such 
that TL.bY > 1 where bY is the electrical bandwidth of the electronic 
equipment including the phototubes, and that the response of the 
electronic correlator is linear to a burst of N photoelectrons, emitted 
in time Tc, for N < A'(max) and then saturates and is independent of N. 
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Under these conditions it can be shown that the time-averaged correla
tion c c v produced by all events is 

J * s V £ ( » c ) d » c + J N*(max)p(nc)dnc\ 
» c (min) njmax) J 

(5.19) 
where G is a constant which includes the gain of the equipment; 
i i 0 is the solid angle of the field of view of each reflector; « ( . (min) is the 
value of nc which yields only one photoelectron; w(,(max) is the value 
of which yields N(mzx) photoelectrons. The quantity Xznc is 
the number of photoelectrons produced in each phototube by a flux 
of nc photons arriving from a zenith angle z, and is given by 

Xz = 4 / W " e v ) J oc{v)g{V)p{v)^ * dv (5.20) 

where A is the area of each reflector; Av is the total optical bandwidth ; 
a(r) is the quantum efficiency of the phototube; g(v) is the trans
mission of the optical system; p ( v ) s e c z is the atmospheric transmission 
at a zenith angle z; the spectrum of the Cerenkov light is taken to be 
such that nv(v) is a constant ; / ( Q 0 / Q e v ) is the fraction of the total light 
in the Cerenkov flash which falls within the angular field of view of 
the reflectors. F rom the work of Jelly and Galbraith (1955) they took 
the distribution of light pulses to be 

/>(nc) = K 0 n u - 2 - 6 c o s 3 2 . (5.21) 

Substituting for p(nc) in equation (5.19) and putting n (.(min) = X s ~ 1 

anil H(.(max) = N(m&x)Xg

_1, then by integration, 

c 1. v = G Q 0 T e - 1 ^ 0 c o s » » ^ - « [ 3 - 1 2 A f , ( m a x ) M - 2 - 5 ] . (5.22) 

Hanbury Browner al. used equation (5.22) to estimate the correlation 
due to Cerenkov light under normal working conditions on a star in 
the stellar interferometer at Narrabri. They assumed that Af(max), 
the saturation level of the correlator, is ten times the r.m.s. noise level 
due to the light from the star and calculated the expected correlation 
c,.v for a wavelength of 443 nm with a total bandwidth of 10 nm. 
They took the value of the constant K0 from the direct measurements 
of the Cerenkov pulse rate made at Narrabri (described in §11.9). 
Their results are shown by the broken lines in fig. 5.2 where log c c v is 
plotted as a function of the blue magnitude B of a star under observation 
in the zenith. In their discussion they reached the conclusion that the 
principal uncertainty in their estimate is in the exponent of the integral 
pulse height spectrum which they took to be - 1-6. They therefore 
repeated the calculations for extreme values of this index of —1-0 
and - 2 - 0 and the results are shown in fig. 5.2. They suggest that 
the true correlation must be somewhere between these extremes. 
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It should be noted that in making these calculations, Hanbury 
Brown et al. assumed that the angular field of view 120 of the reflectors 
(diameter = 6-5 m) is small compared with i i v v the angular distribution 
of the Cerenkov flash; there is both theoretical (Zatsepin, 1964) and 
experimental evidence ( H i l l and Porter, 1961) to support this assump
tion. It should also be noted that their calculations refer to a separation 
between the reflectors of 10 m ; this was chosen because it is the 
minimum possible separation and it is under these conditions that one 
expects the correlation due to Cerenkov light to be a maximum. 

Finally, the full line in fig. 5.2 shows, on the same scale, the correla
tion to be expected from an unresolved star of blue magnitude B in 
the zenith. 

ig. 5.2. Expected correlation due to Cerenkov pulses for an intensity interferometer, 
observing a star of apparent magnitude B, is shown by the broken lines for a 
baseline of 10 m. and three exponents of the integral pulse-height spectrum. 
The full curve is the correlation due to the star (unresolved). All curves 
correspond to observations in the zenith with a field of view ot 15' diameter. 
Experimental upper limits to the correlation from the night sky are shown by 
the square (11 September 1966) and circle (30 August 1967). From Hanbury 
Brown, Davis and Allen (1969). 
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A n inspection of the results in fig. 5.2 suggests strongly that any 
correlation due to Cerenkov light would be negligible over the whole 
working range of the Narrabri instrument (fi<2-5). Several tests 
were made to check this conclusion, and in two of these tests (see 
§ 11.10) a blank region of the night sky was observed for many hours 
to see whether or not there was any unwanted correlation. N o such 
correlation was found and the results of the two tests are shown in 
fig. 5.2 as experimental upper limits. 

Hanbury Brown et al. also discuss the effects of Cerenkov pulses on 
larger and more sensitive instruments than the interferometer at 
Narrabri. They show that the limits to performance set by Cerenkov 
light are always likely to be unimportant since they are less restrictive 
than those set by the shot noise due to background light from the 
night-sky. For example, from fig. 5.2 we can see that for a field of 
view 15 minutes of arc in diameter the limiting stellar magnitude, set 
by uncertainties about Cerenkov radiation, is roughly +6, but it is 
simple to show that the excess shot noise at the correlator output, due to 
the general background light from the sky, would be about 50 per cent 
of that due to a star of magnitude + 6 and would therefore more than 
double the exposure times. In practice this 'background noise' would 
reduce the limiting magnitude to about + 4 or +5 where the correla
tion due to Cerenkov light would be unimportant. 

The limits set both by Cerenkov light and by the noise from the sky 
background can, of course, be improved by reducing the field of view. 
But the excess noise due to the background light decreases directly as 
Q„, while the unwanted correlation due to Cerenkov light must neces
sarily decrease as a higher power of £20 due to the factor / (Q 0 /Q, . v ) 
in equation (5.20). It follows that in any interferometer designed to 
reach stars fainter than about magnitude +4 it will be necessary to 
reduce the field of view to less than the present field of 15 minutes of 
arc, and the limits set by shot noise due to the light from the night-sky 
will always be reached before those set by correlation due to Cerenkov 
radiation. 

5.8 A Brief Theory of the Effects of Atmospheric Scintillation 
5.8.1 A mathematical model of scintillation 

A satisfactory theoretical analysis of the expected effects on an 
intensity interferometer of atmospheric scintillation has not yet been 
published. Only a brief discussion by Hanbury Brown and Twiss 
(1958 a) has appeared in print and, in the absence of a more thorough 
treatment, we shall summarize it here. They consider first the effects 
of atmospheric scintillation on measurements of an unresolved star. 
Under these conditions the light at the top of the Earth's atmosphere 
can be represented by a set of plane waves which in turn can be 
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represented as two independent and orthogonally polarized com
ponents. The electric vector in one of these components, the rth, can 
be represented by a Fourier series of the form 

00 

E(t) = 2Ercos[(2nrlT)(t-{s-z0)lc)-4>r) (5.23) 

where the z axis is taken along the line joining the observer and the 
star and where z0 is the length of the equivalent vacuum path from the 
observer to the top of the atmosphere. 

At the bottom of the atmosphere an incident plane wave wil l appear 
as a continuum of plane waves produced by refraction and diffraction 
at atmospheric irregularities, so that the electric field at a particular 
point (x, y, o, t) wil l have components along all three spatial axes, the 
/th component being of the general form 

Elr[l + Plr(xvt) cos {{InrtlT) -4>r- ^ ( x ^ /))] (5.24) 

where plr(xvt), ^r, r(x,,f) are the fluctuating amplitude and phase 
variables respectively which determine the scintillation at the point 
(xvt). 

If (x,) represents a point on the photocathode of one of the photo
tubes, then the probability of the emission of a photoelectron />(Xj, / ) 

is proportional to the square of the amplitude of the electric field and 
they show that 

/>(*i.0-2 (2 KV [ i+ftr (*i .O] ' 

+ 2 2 K * ( l ) 1 2 £ , r ^ ( l + f t r ( « 1 . 0 ) ( l + A . ( « 1 . 0 ) 

x cos [(2n(r-s)tjT)- (0 f r(x l t / ) - < M * i , 0)]) (5-25) 

where a r is the quantum efficiency of the photocathode at a frequency 
r[T. T o find the probability that a photon wil l be emitted when the 
light is focused on the photocathode by a parabolic mirror of aperture 
A, the quantity p (xj, t) is integrated over the aperture so that 

P 1 (0=f/>(x 1 , /)dx 1 . (5.26) 

In an intensity interferometer the observed correlation is proportional 
to the time-average of the joint probability of photoemission at the two 
photocathodes. Consideration of equation (5.25) therefore suggests 
that the correlation observed from the star may be affected by atmos
pheric scintillation in at least two ways; first, there wil l be the additional 
phase-shifts (^ r ,0 j s ) introduced into the light reaching each photo
cathode—and these phase-shifts may not be the same at each detector; 
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secondly, the amplitude of the fluctuations in the outputs of the 
detectors wil l be modulated by the scintillations. These two effects 
are considered in turn. 

5.8.2. Phase-scintillation 
Hanbury Brown and Twiss assume that atmospheric scintillation 

is mused by three-dimensional irregularities of refractive index and 
that the local deviations are small compared with the average value. 
Following Bramley (1955) they write the fluctuating phase-shift as 

0 ( x l f t) = )(fi- p„) dz = ) v d* (5.27) 
I) o 

where fi,fiav are the instantaneous and average values of the refractive 
index respectively. Some of the atmospheric irregularities wi l l 
increase and some wil l decrease the optical path length so that the effect 
is that of random walk and the phase of the emergent wave is randomly 
distributed with a deviation given by 

8</<(x1, t) = (2ir/A) (/L) , /2f3/x (5.28) 

where 8ft,m is the standard deviation of the refractive index; L is the 
total path length through the atmosphere; / is the size of a typical 
irregularity; A is the wavelength of the light. 

If the effects of dispersion are neglected, then the phase-scintillation 
can be represented by a fluctuating time delay T which is introduced 
into the light path by the atmosphere. The r.m.s. value of T is given 
by 

(7T) i /2 = ( S / x / / c N( / Z y ) i /2 ( 5 29) 

Hanbury Brown and Twiss take L = 1 0 m , / = l m and S/x = 10~ 6 

which corresponds to an r.m.s. time delay of 0-3 ps. A study of more 
recent papers on the effects of the atmosphere on the light from lasers 
(e.g. Hodara, 1966) suggests that these values are reasonable and that 
even with the most extreme assumptions, the r.m.s. fluctuations of 
delay are unlikely to exceed 1 ps. 

The effect of inserting a time delay in the light reaching one detector 
has already been discussed in §4.2.4. Substituting in equation (4.34) 
it is simple to show that the loss of correlation due to a delay T in one 
channel can be written 

1 yCos (2,T/T) d / * 1 - l{2^frf (5.30) 

where A / is the bandwidth of the electronic system which is assumed 
to be rectangular for simplicity. If we take the bandwidth as 0 -
100 M H z then the loss of correlation for a time delay of 1 ps is extremely 
small, roughly 1 part in 10 7. 
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It follows that the random time delays introduced by atmospheric 
scintillation have no significant effect on the correlation. Further
more, it is likely that the value of r which we have assumed, is extreme, 
and that we have overestimated the random delay. 

Hanbury Brown and Twiss point out that the effects of dispersion 
have been neglected in their analysis and they argue that they are 
negligible, as follows. The correlated components in the outputs of 
the two detectors can be regarded as intermodulation or difference 
frequencies between frequency components present in the original 
light wave. If the bandwidth of the electronic circuits is restricted to 
frequencies less than 100 M H z , then phase-dispersion in the atmos
phere can only affect the correlation if it introduces significantly 
different phase-shifts into components of the original light which differ 
in frequency by only 100 M H z ; furthermore, the amount of this 
phase-dispersion must be different at the two detectors. Taking the 
usual formula for the refractive index of air, it is simple to show that 
the difference in phase introduced by the entire atmosphere into light 
waves which are 100 M H z apart in frequency is only about 0-5 radians 
at 400 nm. It is therefore clear that any differential phase-dispersion 
produced at the two detectors by minor irregularities in the atmosphere 
wi l l be very much less than 0-5 radian and its effect on the observed 
correlation wil l be negligible. 

5.8.3 Amplitude scintillation 
Turning to the effects of amplitude scintillation Hanbury Brown and 

Twiss assume, for simplicity, that the amplitude scintillations of two 
light frequencies received at a given point are fully coherent if these 
frequencies are separated by less than 100 M H z . They argue that 
this assumption can be justified theoretically and is supported by the 
observations of Mikesell , Hoag and Hal l (1951). Under these con
ditions it is permissible to write 

l+Plr(x1,t)=l+Pls(x1,t) (5.31) 

in equation (5.24) and to represent the effects of amplitude scintillation 
by expressing the probability that a photoelcctron is produced by light 
incident at any point of one mirror as 1 +qi(t) where 

<?,(<) = r ~ " = ' - < 1 „ a (5-32) 

r = l 

and AY is the aperture of one of the mirrors. 
They argue that the quantity qx(t) is an irregularly fluctuating 

quantity with zero mean value and with a power spectrum which in 
practice seldom extends above about 100 H z . The r.m.s. value of 
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qx(t) depends upon the mirror aperture and the zenith angle of the star. 
For mirrors of the order of 3 m in diameter and for zenith angles less 
than 45°, they estimate that q^t) wil l not exceed about 0-03 even under 
conditions of bad seeing. The effect of this amplitude scintillation wil l 
be to increase the correlation by the factor 

<(1 +?1(0) (1 + ? * ( ' ) ) > „ = 1 + <fc(')fc(0>„ (5-33) 

when amplitude scintillation is present. Thus, even in the worst 
imaginable case, when the amplitude scintillations are completely 
correlated at the two detectors and when the r.m.s. value of qi(t) = 0-03, 
the correlation would be increased by less than 1 part in 103. In 
practice the amplitude scintillations at two detectors separated by a 
few metres wi l l be almost uncorrelated and therefore the effect wi l l be 
even less. They conclude that the effects of amplitude scintillation 
on an intensity interferometer are negligible. 

It is interesting at this point to refer to the measurements, made at 
Narrabri with reflectors 6-5 m in diameter, which are described in 
§11.11. They show that the observed amplitude scintillation was 
very much smaller than the value q(t) = 0-03 assumed above. 

5.8.4 Angular scintillation 
Finally, Hanbury Brown and Twiss consider the observation of a 

star with a finite angular size. In this case the correlation may be 
altered if atmospheric scintillation introduces appreciable differential 
phase-shifts into light waves reaching a point on the Earth from different 
points on the star. Such differential shifts might be introduced i f 
rays from different points on the star traverse different irregularities. 
However, this effect cannot be significant if the two points at which 
tin rays traverse the irregularities are so close together that they lie in 
the same Fresnel zone as viewed from the receiving point. For 
example, if the angular diameter of the star is 0-01 seconds of arc and 
the irregularities are at any height up to say 10 km, then the maximum 
separation between two rays from the extremities of the star cannot be 
greater than 0-05 cm. A t a wavelength of 400 nm the diameter of the 
first Fresnel zone on a plane at a height of 10 km as seen from a point 
on the Earth, is of the order of 5 cm. It follows that the effects of 
these differential phase-shifts are unlikely to be significant. 

A second way in which differential phase-shifts could arise is through 
angular scintillation. Thus it is known from experiment that, for a 
specific point on the reflector, the instantaneous direction of the incident 
light can fluctuate by as much as 3 seconds of arc around the mean value 
with a standard deviation of about 1 second of arc under conditions of 
rather poor seeing. In the most unfavourable case, where the 
scattering occurs in a single thin layer, the differential phase-shifts 
introduced by this effect into light emitted by different points on the 
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star are just those which would arise if the observing point on Earth 
were to be translated horizontally by a distance 

£ = xHsecz (5.34) 

where x 1S t r i e scattering angle, H is the height of the scintillating layer, 
z is the zenith angle of the star. Taking as an extreme value / / sec z = 
5 x 10 4 m and the standard deviation of x to be 1 second of arc, then the 
standard deviation of £ is about 25 cm. 

Experience with large reflectors shows that the correlation between 
angular scintillations at points more than about 30 cm apart is usually 
small. Hence Hanbury Brown and Twiss argue that the effect of 
angular scintillation on an intensity interferometer can be analysed on 
the assumption that elements of the reflector aperture, of the order of 
30 cm in size, are randomly displaced with respect to one another by 
distances of the order of 25 cm. This movement would effectively 
change the shape and area of the reflector and randomly displace the 
optical centre by an amount which is appreciably smaller than the 
displacement of a single element. For mirrors of several metres 
diameter this random displacement would probably be less than 
25 cm by an order of magnitude; furthermore, the direction of this 
displacement would be random and its mean value would be zero over 
a long period. Thus they conclude that, for measurements which 
involve baselines of the order of several metres, the effect of this random 
apparent displacement of the optical centres of the reflectors by angular 
scintillation would be negligible; they also add that it can be shown 
that the random changes in the effective shape and aperture of the 
reflectors are also unlikely to produce significant effects. 

5.8.5 Summary of the effects of scintillation 
In summary, Hanbury Brown and Twiss have advanced plausible 

arguments that the effects of atmospheric scintillation on the correlation 
observed with a large intensity interferometer are negligible and their 
analysis is supported by the observations at Narrabri reported in 
§ 11.11. Thus, from a severely practical point of view, we may 
safely conclude that the effects of scintillation are unlikely to have been 
significant in the measurements at Narrabri which were carried out 
over a limited range of zenith angles (less than 60°) and with an accuracy 
of only a few per cent. Nevertheless, this freedom from the effects of 
scintillation is a remarkable and important property of an intensity 
interferometer and it would be worth while to refine both the analysis 
and the observations to establish these effects more precisely. 
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CHAPTER 6 
laboratory tests 

6.1 Tests of a Linear Multiplier Intensity Interferometer 
The first laboratory test of an intensity interferometer was carried 

out in 1955 (Hanbury Brown and Twiss, 1956 a). This test established 
that when two photoelectric detectors are illuminated with coherent 
light the fluctuations in their output currents are correlated; the 
measured correlation was in fair agreement with theory. In view of 
the controversy which surrounded the publication of these results, it 
was decided to repeat the experiment with improved apparatus and 
greater precision. Th i s second experiment was carried out at the 
Joilrell Bank Experimental Station of the University of Manchester in 
1957 (Hanbury Brown and Twiss, 1957 c). 

6.1.1 The optical system 
Fig . 6.1 shows a simplified outline of the optical system used in this 

second experiment. The light source was formed by a circular pinhole 
()• 19 mm in diameter on which the image of a mercury arc lamp was 
focused by a lens. The image of the arc was adjusted so that the 
pinhole lay in the brightest part close to one of the electrodes. The 
4.^-8 nm line of mercury was isolated by a l iquid filter. The beam 
of light from the pinhole was divided by a semi-transparent mirror to 
illuminate the cathodes of the photomultipliers P 1 ; P 2 . The area of 
each cathode exposed to the light was limited by a square aperture of 

S e m i - t r a n s p a r e n t 
m i r r o r 

Fig. 6.1. Optical system of correlation experiment. 
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5 x 5 mm, and the distance from the pinhole to each cathode was 
adjusted to be 2-240 m. 

The photomultipliers were a matched pair ( R . C . A . type 6342) with 
flat end-on cathodes and ten stages of 'focused dynode' multiplication. 
The cathodes had a maximum response at 400 n m ; their spectral 
responses were almost identical and their quantum efficiencies were 
16-9 and 14-6 per cent at 400 nm. 

The degree of coherence of the light at the cathodes could be varied 
by traversing one photomultiplier (P 2 ) horizontally and normal to the 
incident light. Thus the cathode apertures, as viewed from the 
pinhole, could be superimposed or separated by any desired amount 
up to several times their width. 

The fluctuations in the anode currents of the photomultipliers were 
transmitted to a correlator through coaxial cables of equal length. The 
d.c. component of these currents was separated by a filter and measured 
separately. 

6.1.2 The correlator 
The most difficult problem in building an intensity interferometer is 

to make a satisfactory correlator. At first sight the problem looks 
reasonably simple; one has only to multiply two wide-band voltages 
together and observe their product. But the practical difficulties in 
doing this are severe; the correlation between the two voltages is so 
small that, unless special precautions are taken, the measurements are 
seriously affected by very small drifts in the zero of the multiplier 
output. 

In §4.2 we showed that the correlation is the product of two small 
components of wave noise j 2 which arc submerged in much larger 
uncorrelated components of shot noise jn'2. If we now consider 
observations of a bright star, where the ratio of correlation to r.m.s. 
noise in the output of the multiplier is typically 1/1 in an observation 
lasting 100 s, then, for an electrical bandwidth A / = 100 M H z , equations 
(4.18) and (4.19) show tha t7? / j ?~ 10~ 5 at the input to the correlator. 
This corresponds to a correlated component which is 50 dB below 
noise at the inputs to the multiplier and 100 dB below noise in the 
output. As a first attempt, in 1955, to solve the problem of measuring 
this extremely small component, the technique of 'phase-switching' 
was borrowed from radio-astronomy. A phase-reversing switch was 
inserted in one input to the multiplier and arranged to reverse the phase 
of the signal 10 000 times per second. This operation converted the 
small d.c. component in the output of the multiplier, corresponding to 
the correlation, into a low-frequency signal which was then amplified 
in a narrow-band amplifier thereby removing most of the higher-
frequency components of noise. The output of this amplifier was 
synchronously demodulated to give an 'output' which was integrated 
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and recorded. It was found experimentally that this system could 
not be made sufficiently stable. If two completely uncorrelated 
wide-band noise voltages were applied to the correlator then, over 
periods of hours, the integrated output of the synchronous demodulator 
would tend to drift irregularly away from zero by a significant amount. 
T o combat this zero-drift a second phase-switch was introduced to 
reverse the phase of the other input to the multiplier every 10 s. The 
output of the first synchronous demodulator was then passed through 
a low-pass filter to reduce further the noise and was then 'synchronously 
demodulated' for the second time by a simple reversing switch operated 
every 10s. The output of this final reversing switch was taken 
directly to the recorder, which in this case was an integrating motor. 
The object of this second demodulator was to reduce the zero-drift in 
the output of the first demodulator, and it is a feature of the system 
that there are no active components in the second demodulator which 
might introduce drifts. A l l subsequent correlators have been based 
on this technique of double phase-switching. 

Fig . 6.2 shows a simplified outline of the correlator used during the 
second laboratory experiment in 1957. The cable from each of the 

Inputs f r o m 

'photomult ipl iers -

Synchronous ^ 
demodulato 

Square-wave 
genera tor 

( 5 k H z ) 

Square - law 
rec t i f i e r ~ 

Noise level 
integrat ing 
m o t o r 

C o r r e l a t i o n 
integrat ing 
m o t o r 

Fig. 6.2. Outline of correlator used in laboratory experiment in 1957. 
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photomultipliers was terminated in a matched load and the voltage 
fluctuations across this load were applied to one of the two input 
channels of the correlator. Both channels consisted of a phase-
reversing switch followed by a wide-band amplifier. The phase-
reversing switch Sj in channel 1 was electronic and reversed the phase 
of the input voltage 10 000 times per second in response to a 5 k H z 
square wave from the generator Gv It was essential, because of 
non-linearities in the multiplier, to reduce amplitude modulation of 
the signal by this switch to an extremely low level in order to reduce 
spurious signals at 5 k H z in the output of the multiplier ; for this reason 
the gain of the switch was equalized in both positions by means of an 
automatic balancing circuit comprising a rectifier (not shown) which 
detected any amplitude at the output of the amplifier B , , a selective 
5 k H z amplifier B ; ! and a synchronous demodulator Rj . The phase-
reversing switch S 2 in channel 2 consisted of a relay-operated coaxial 
switch which reversed the phase of the input every 10 s in response 
to an 0-05 Hz square wave from the generator G 2 . The wide-band 
amplifiers B J ; B 2 were identical in construction and their gain was 
substantially constant (+ 1 dB) from about 5 to 45 M H z and decreased 
rapidly outside this band. Their outputs were multiplied together 
in the multiplier C , which consisted of a balanced arrangement of 
two pentode valves with their anodes in push-pull. The output of 
this multiplier was amplified by a high-gain selective amplifier B 4 

tuned to 5 k H z with a bandwidth of 70 Hz . The output of B 4 was 
applied to the synchronous demodulator R 2 which consisted of a ring 
of diodes synchronized by the 5 k H z wave generated by G j . The 
demodulator R 2 was followed by an 0 05 H z amplifier B 5 which was 
relatively broad-band and passed all frequencies from 0-01 to 0-25 H z . 
The final synchronous demodulator R 3 consisted of a relay which, in 
response to the 0-05 H z square wave from G 2 , periodically reversed 
the connections between the output of the amplifier B 5 and the inte
grating motor M j . A low-pass filter, containing only passive elements, 
was inserted between the output R 3 and the integrating motor to 
restrict the bandwidth of the noise to the range 0 to 0-01 H z . The 
integrating motor was a miniature motor coupled to a revolution 
counter; it was capable of rotation in either direction and tests showed 
that the relation between speed and input voltage was linear to better 
than 1 per cent. A n additional integrating motor M 2 was provided to 
monitor the r.m.s. level of output voltage from the amplifier B 5 . 

If now the photomultipliers in this arrangement are illuminated with 
uncorrelated beams of light (y 1 2 = )̂> then the output of the multiplier 
is random noise with a spectral density which has a maximum around 
zero frequency and which decreases to zero at about 40 M H z . The 
corresponding output from the amplifier B 4 is random noise centred 
about 5 k H z with a bandwidth of 70 H z . After passing through the 
synchronous demodulator R 2 the spectrum extends from 0 to 35 H z , 
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and after passing through amplifier B 5 and the second synchronous 
demodulator R 3 , it is reduced to a band extending from about 0 to 
0-25 Hz . The low-pass filter following R 3 finally restricts the band
width to the range 0 to 0-01 H z . Under the influence of this noise 
the motor M j spins in either direction at random and the reading of 
the revolution counter remains close to zero. However, if the light 
is coherent at the photomultipliers (yv, > 0), a 5 kHz component appears 
at ilie output of the multiplier; this component is coherent with the 
5 k I \ /. switching wave and reverses in phase every 10 s in synchronism 
wi l l i the 0-05 H z switching wave. After amplification by B 4 the 
5 k H z component produces a 0-05 I Iz square wave in the output of the 
synchronous demodulator R 2 ; this in turn is amplified by B 5 and is 
synchronously rectified by R ; ! to produce a d.c. component in the 
voltage applied to the integrating motor. Thus, when the light is 
coherent at the two photomultipliers, the integrating motor revolves 
more in one direction than the other and the reading on the revolution 
counter increases with time as a measure of the correlation. 

Any unwanted coupling between the two input channels, or unwanted 
external signals, introduces spurious correlation if it occurs before the 
phase-reversing switches. It was therefore necessary to screen the 
photomultipliers verv thoroughly against coupling or electrical 
interference. 

Extensive tests of this correlator, using independent light sources to 
illuminate the phototubes, showed that over several hours the zero 
drift in the output was less than the theoretical uncertainty due to noise 
alone. Although short-term deviations, greater than would be 
expected, were in fact observed, it was found that their effect was 
negligible in observations lasting more than 30 min. 

6.1.3 Experimental procedure and results 
The two photocathodes, as viewed from the light source, were 

superimposed by adjusting the position of the movable photomultiplier 
P 2 (fig. 6.1). Readings were then taken every 5 min, for a total period 
of 4 hours, of the revolution counters on the integrating motors Mt and 
M 2 and also of the anode currents of the photomultipliers. The 
centres of the two photocathodes, as seen from the light source, were 
then separated by 1-25, 2-50, 3-75 and 10-0 mm. In each of these 
positions readings were taken at 5 min intervals for about 30 m i n ; 
the readings were then repeated with the cathodes separated by the 
same distances but in the opposite direction. 

Throughout the experiment the gain of the amplifier B 4 (fig. 6.2) 
was controlled to keep the output noise from the correlator approxi
mately constant. The gains of the two photomultipliers were measured 
before and after every run. Table 6.1 shows the experimental results. 
The correlation and noise measured in each 5 min interval were 
weighted appropriately by the anode currents and added to give an 
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r.m.s. signal/noise ratio for each cathode separation. These ratios 
are independent of the inevitable small changes in the light from the 
arc lamp and of changes in the gain of the correlator. They are shown 
in column 2 of Table 6.1. 

Cathode Observed Theoretical 
separation correlation correlation 

djmm Signal/noise (r.m.s.) Signal/noise (r.m.s.) 

0 -•17-55 > 17-10 
1-25 + 8-25 8-51 
2-50 (-5-75 ; 6-33 
3-75 4 3-59 -1 4-19 
5-00 + 2-97 + 2-22 

10-00 +0-90 +0-13 

Table 6.1. The experimental and theoretical correlation between the 
fluctuations in the outputs of two photoelectric detectors illuminated 
with partially coherent light. From Hanbury Brown and Twiss (1957 c). 

Separat ion of p h o t o c a t h o d e s , d / m m 

Fig. 6.3. The experimental and theoretical values of the normalized correlation factor 
r2(po> d) f ° r different separations between the photocathodes. The experi
mental results are shown as points with their associated probable errors. 
From Hanbury Brown and Twiss (1957 c). 

6.1.4 Comparison between theory and experiment 
The theoretical signal/noise ratios for each cathode spacing were 

calculated from equation (5.17) and are also shown in Table 6.1. 
The parameters^, A2, a, P0,g(vQ), ot(v0), n(v0), bv, r?, (1 +a), (1 + S),/x 
were measured in the laboratory and e, A(v 0 ) and r 2 ( i / 0 , d) were calcula
ted. The results are also shown in fig. 6.3 in a form which shows clearly 
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how the correlation decreased with cathode spacing. In this figure 
the observed signal/noise ratios have been normalized by the theoretical 
values for zero cathode spacing. Effectively this procedure yields 
experimental values for the normalized correlation factor r 2 (v 0 , d) 
and the results have been plotted in fig. 6.3 for comparison with the 
theoretical values of this function shown as a solid curve. 

The data show that the experimental results are in agreement with 
theory within the uncertainties set by statistical fluctuations. In 
principle the comparison could have been made closer by increasing 
the time of observation. However, in practice, it is unlikely that this 
particular experiment could have been made much more precise 
without considerable elaboration. It would soon have reached limits 
set by uncertainties in some of the parameters. In this connection we 
note in retrospect that the time delays in the two phototubes were not 
measured and equalized, as in later interferometers; experience suggests 
that there might have been an unsuspected loss of correlation of as 
much as 5 per cent. Furthermore, it must be remembered that the 
theoretical signal/noise ratios are themselves based on a number of 
simplifying assumptions; for example, it is assumed that the quantum 
efficiency is constant over the photocathodes, and these approximations 
might well have prevented any substantial increase in the precision of 
the comparison between theory and experiment. 

6.2 Tests of a Coincidence-counting Intensity Interferometer 
6.2.1 Introduction 

The first attempt to test whether there is any correlation between 
the times of arrival of photons in coherent beams of light appears to 
be that made in Hungary by Adam, Janossy and Varga (1955). They 
split a light beam into two parts with a semi-transparent mirror and 
used two photomultipliers to look for time-coincidences between 
photons in the two beams. They found no evidence for excess 
coincidences and concluded that "the number of photons taking part 
in coincidences is certainly not larger than 0-6 per cent". They argued 
that the photons of a light beam which is being split into two components 
wi l l be contained in either the one or the other component and that 
" i f these two components fall on the cathodes of two photomultipliers, 
the individual photons contained in either light component can be 
recorded and, according to quantum theory, the pulses recorded by the 
two multipliers wil l be independent of each other; thus no systematic 
coincidences are to be expected". 

Following the publication by Hanbury Brown and Twiss (1956 a) 
of the results described earlier in this chapter a second attempt was 
made to detect the correlation between photons using a coincidence 
counter. This second attempt was made in Canada by Brannen and 
Ferguson (1956). They repeated the experiment of Adam et al., 
but with improved equipment, and concluded again that "there is no 
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correlation between photons in coherent light rays". T o be more 
precise, their experiment showed that the probability that more than 
0-03 per cent of the photons were in true time coincidence was less 
than one part in 10 7. They claimed that, " i f such a correlation did 
exist, it would call for a major revision of some fundamental concepts 
in quantum mechanics". 

It is worth while to recall these two experiments because they 
illustrate how misleading the mental picture of photons can be. In 
both cases the objection to the correlation between photons stemmed 
from the idea that one can only expect time-correlation from bits of the 
same photon and, since quantum theory does not allow us to split 
photons, no correlation is to be expected. 

Although the theoretical interpretation of these experiments was 
completely wrong there is no reason to reject the experimental results. 
It can be shown theoretically (Hanbury Brown and Twiss, 1956 c) 
that in the experiment of Adam et al. the fraction of photons in true 
coincidence should be less than 10~ 9, which is consistent with their 
experimental upper limit of 6 x 10~ 3. In the second experiment, of 
Brannen et al., the theoretical expectation is about 10~ 8, which is again 
consistent with their experimental upper limit of 3 x 10^ 4. As we have 
already shown in §4.3.3, a successful experiment of this type can only 
be performed with a bright source of light with a very narrow spectral 
distribution. In neither of these experiments was this condition 
fulfilled and consequently they could not be expected to yield significant 
results. 

Photoelectr ic cc 

J 
y to C o i n c i d e n c e - c o u n ' 

Semi - t r a n s p a r e n t 
mi r r o r 

Fig. 6.4. Arrangement of the optical system in the experiment of Twiss and Little. 

6.2.2 The experiment of Twiss and Little 
The first demonstration of the time-coincidence between individual 

photons was reported by Twiss, Lit t le and Hanbury Brown (1957). 
This experiment was carried out in Australia and has been described 
in detail by Twiss and Little (1959). The arrangement of the optical 
system is shown in fig. 6.4. The light source consisted of an electrode-
less mercury isotope lamp excited at 800 M H z . The visible area of 
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the light source was limited by a circular pinhole 0-36 m m in diameter 
in a brass tube which fitted tightly over the discharge tube. The light 
flux from this lamp was 0-0013 W c m - 2 s r _ 1 and the coherence time 
was measured to be T0 = 0-73 ns. The 546-1 nm line of mercury was 
isolated by a filter and the beam was split by a semi-transparent mirror 
to illuminate two photomultipliers. The areas of the photocathodes 
exposed to the light were limited by square apertures 2 x 2 m m at a 
distance of 1-25 m from the source. Both phototubes were mounted 
on movable slides so that, as seen by the source, they could be optically 
superimposed or separated by a distance of 5 mm transverse to the line 
of sight; at this latter separation the pinhole source was completely 
resolved, so that the incident light beams were uncorrelated. The 
outputs of the phototubes were taken to a coincidence counter with a 
resolving time of 3-5 ns. In order to establish the random counting 
rate a delay of 15 ns could be inserted in one channel. 

The measurements were carried out as follows: the photocathodes 
were optically superimposed and the number of coincidences in 2 min 
nlr was recorded; one of the photocathodes was then moved to the 
displaced or uncorrelated position and the number of coincidences 
in 2 min n 2 r was again recorded. The whole procedure was repeated 
ten times in a single run which took about 50 min to complete. 

If the average light intensity reaching the movable photocathode had 
been equal in the coincident and displaced positions, then (A 7, — N2)/N2 

would have given a measure of the ratio of the excess or 'correlated' 
coincidences to the random coincidences, where 

10 10 

N , = 2 n l r , N2 = £ n 2 r . (6.1) 
r = l r = l 

However, in this experiment there was a difference of the order of 
0-5 per cent between these two intensities and, to eliminate the effect 
of this, a comparison run with the delay cable in one channel of the 
coincidence counter was made after each observation. The delay in 
this cable being about four times the resolution of the coincidence 
counter, there was no chance of a count being registered by the 
simultaneous arrival of photons at the two photocathodes. 

The procedure in the comparison run was identical with that in the 
observation run. F r o m this second set of results a correction factor e 
was computed, where 

10 / 10 

« = X »'* I " ' l r = A Y / A Y (6-2) 
r-l I r - 1 

and e represents the ratio of the light fluxes incident upon the movable 
photocathode in the displaced and coincident positions. The number 
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of excess or 'correlated' coincidences nc, corrected for differences in 
light intensity, is then given by 

nc = P(!Na (6.3) 

where pc is the ratio of correlated to random coincidences and is given 
by 

pL. = (Nie~N,)IN2. (6.4) 

A total of six runs, amounting to 480 min of observation, was made 
using the procedure described above and the results are shown in 
Table 6.2. Combining these results, making a total number of 
coincidences of about 7 x 105, the experimental ratio of correlated to 
random counts is 

^(experimental) = 0-0193 ± 0-0016 (p.e.). (6.5) 

As a final check a seventh run was made with a tungsten filament lamp 
in place of the isotope lamp; as expected, no significant correlation was 
observed as shown by the bottom line in the Table. 

The theoretical value of pc is given by equations (4.51) and (4.53) 
and it can be shown that 

P C = (T0/4Tc)A(„0)£ (6.6) 

where r e is the resolving time of the coincidence counter; CT0 is the 
coherence length of the light; g takes account of a number of small 
losses of correlation in the equipment due, for example, to polarization 
effects in the semi-transparent mirror ; A(v 0 ) is the partial coherence 
factor (see §5.3) which allows for the finite size of the photocathode. 
Taking the measured values To = 0-73 ms, T0=3-5 ns, £ = 0-86 and the 

Random Correlated Correlated/Random 
Run coincidences coincidences p c X l 0 0 

1 135 446 2986 2-20 
2 128 975 2190 1-70 
3 136 250 2369 1-73 
4 99 640 2185 2-19 
5 96 326 1864 1-94 
6 93 848 1761 1-88 

Dummy run with 
white light 81 576 185 0-22 

Table 6.2. Ratio of correlated to random coincidences of photons observed 
by Twiss and Little (1959). 
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calculated value A(v 0 ) = 0-475, Twiss and Litt le found the theoretical 
value of pv to be 

p e(theoretical) = 0-0207. (6.7) 

The uncertainty in this figure, due to uncertainties in the parameters, 
was estimated to be about ± 0-002. 

A comparison of the theoretical and experimental values of pc 

shows that they are in satisfactory agreement, the discrepancy being 
less than the uncertainty in either value. Thus the experiment 
confirms that the arrival times of photons at different points are 
correlated when these points are illuminated by mutually coherent 
beams of light. 

Twiss and Little carried out two further experiments with their 
coincidence-counting interferometer. In one experiment they 
measured the variation of photon-correlation as a function of the 
displacement of the photocathodes. The results were in good agree
ment with theory. In another experiment they measured the coinci
dence rate with the two cathodes superimposed, but with the two light 
beams alternately parallel and orthogonally polarized. This latter 
experiment confirmed that photons are correlated when the beams are 
parallel polarized but uncorrelated when they are orthogonally 
polarized. 

6.2.3 Other experiments 
Following the work of Twiss and Lit t le , the correlation between 

photons was confirmed, using coincidence counters, by Rebka and 
Pound (1957), by Brannen, Ferguson and Wehlau (1958), by Mart ien-
ssen and Spiller (1964) and by Farkas, Janossy, Naray and Varga 
(1965). A l l these experiments have confirmed that the theory of the 
correlation between photons, as presented in § 4.3 is correct. Although 
there seems to be little practical application for a coincidence-counting 
interferometer, it is a striking and easily appreciated demonstration of 
the wave-particle duality of light. 
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CHAPTER 7 
two early intensity interferometers 

7.1 A Radio Intensity Interferometer 
We have already noted in chapter 1 that the first intensity interfero

meter was a radio interferometer proposed in 1949 specifically to 
measure the angular sizes of the two most intense radio sources in the 
sky, Cygnus A and Cassiopeia A . A pilot model was built in 1950 
and was tested by measuring the angular diameter of the Sun at 
125 M H z . As this first test proved satisfactory a full-scale instrument 
was built in 1951 and was used successfully to measure the angular 
sizes of the two radio sources. The theory of this instrument has been 
published by Hanbury Brown and Twiss (1954); a description of the 
instrument and the results has been given by Hanbury Brown, 

<s*u>>̂  <s1(t)s2(t)> <s|(t^ 

Fig. 7.1. Outline of a radio intensity interferometer. 

84 



Jennison and Das Gupta (1952) and, in greater detail by Jennison and 
Das Gupta (1956). 

A simplified block diagram of the equipment is shown here in fig. 7.1. 
Two spaced aerial systems A j , A 2 , each with an area of 500 m 2 , were 
connected to two completely independent superheterodyne receivers 
R,, R 2 . These receivers were both tuned to 125 M H z with a band
width of 200 kHz . Thei r intermediate-frequency outputs were 
rectified in square-law detectors and fed to two identical filters with 
bandpasscs extending from 1 to 2-5 kHz . The low-frequency outputs 
of these filters were then brought together using a radio link, and their 
product or correlation measured in a linear multiplier or correlator. 
T o compensate for the time taken for one signal to travel along the 
baseline and for the difference in the time of arrival of the signals at the 
two aerials when the direction of the source was not normal to the 
baseline, an adjustable delay was inserted in one channel. The 
outputs of the two filters S^t), S.z(t) were rectified in linear detectors, 
giving <<S1

2(<))1/2, (S 2

2(*)) 1 , 2> and recorded by pen recorders. The 
output of the multiplier )S 2(*)) was also recorded. From these 
three records the normalized correlation cx(d) was found from 

<51(052(0> 
(7-1) [<5 1

2 ( r )> i ' 2 -P Y 1 ] [<5 2

2 (0>" 2 -P . v 2 ] 

where d is the baseline between the aerials; P V 1 , / J

V 2 are the average 
values of the filter outputs when the source is not in the aerial beam, 
or in other words, they are the sum of aerial and receiver noise. F ig . 
7.2 illustrates the passage of a source through the beam of the aerials. 

<S2 (t>>i I 

<&4 1 

<s,(t>s2(t£> 1 

Recorder C 

Recorder B 

Tronsi t of 
source 

Fig. 7.2. The output of the radio intensity interferometer showing the transit of a 
source through the aerial beam. 
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In their analysis of this radio interferometer Hanbury Brown and 
Twiss (1954) showed that the normalized correlation cx(d) is simply 
equal to the square of the fringe visibility in a Michelson interferometer. 
This result is, of course, to be expected because we have already shown 
in §3.5 that, for a semi-classical model of photoelectric emission, the 
correlation is proportional to the square of the degree of coherence 
|y d (0) | 2 . Since this model is precisely equivalent to the radio case, the 
normalized correlation cx(d) must also be equal to |y r f (0) | 2 and hence, 
from equation (4.7), to the square of the fringe visibility in Michelson's 
interferometer. It follows from the discussion in §4.1 that, by 
measuring cx(d) as a function of d, the angular size of a radio source can 
be found. 

There is however, one significant difference between the analysis of 
the radio and optical interferometers which should be noted. The 
ratio of wave noise to shot noise in the outputs of the detectors is very 
different in the two cases. Th is is to be expected because the radio 
photon carries much less energy than the optical photon. Thus from 
equation (4.20) the ratio of wave noise j2 to shot noise jn

2 is 

;V7i7=**o-4 (7.2) 
where a is the quantum efficiency; A is the area of the detector and n0 

is the number of photons received per unit time, area and bandwidth. 
For the same energy flux the number of photons n0 at 100 M H z wil l be 
roughly 106 greater than at optical wavelengths and, substituting 
practical values in equation (7.2), we find that in the radio interferometer 
j2 )g>j„2 and therefore wave noise predominates ; in the optical interfero
meter j2 -4jn

2 and shot noise predominates. This difference affects 
only the calculation of the signal/noise ratio and means that equation 
(4.30), which we derived for the optical case, cannot be applied to the 
radio case. The signal/noise ratio of the radio interferometer is more 
difficult to calculate due to the correlation between the wave noise in 
both channels; this point is discussed by Hanbury Brown and Twiss. 

Successful measurements of both Cygnus A and Cassiopeia A were 
made with this first radio interferometer and were reported in detail 
by Jennison and Das Gupta (1956). Cassiopeia A proved to be a 
radially symmetrical source with an angular diameter of several 
minutes of arc, while Cygnus A proved to be a double source. The 
variation of the normalized correlation coefficient with baseline, as 
observed along the major axis of Cygnus A is shown in fig. 7.3. Th i s 
result was interpreted as being due to a double source consisting of 
two equal components with a diameter of about 45 seconds of arc and 
a separation of 1' 25". The maximum baseline used in the experiment 
was about 12 km. 

A n interesting feature of this work was that, on occasions, the 
intensity of the source fluctuated rapidly due to irregularities in the 
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Fig. 7.3. The variation of the normalized correlation coefficient for the source 
Cygnus A observed at 24 m (125 MHz) along the major axis. From Jennison 
and Das Gupta (1966). 

ionosphere. This led us to investigate, both theoretically and 
experimentally, whether or not the observations of an intensity 
interferometer are affected by scintillation. A brief account of the 
theoretical analysis is given by Hanbury Brown and Twiss (1954). 
They consider first the effects of differential delays or phase-changes 
introduced by the ionosphere into the signals reaching the two aerials. 
They estimate that the total delay in the ionosphere is about 1 JJLS and 
therefore, any differential delays are likely to be less than this value. 
Since the bandwidth of the fluctuations reaching the multiplier was 
limited to 1-2 kHz , it follows from equation (4.34) that such delays 
would have a negligible effect on the measured correlation. There 
are also the large fluctuations in intensity due to scintillation and they 
argue that these wil l not affect the normalized correlation, provided that 
their period is long compared with the response time of the output 
integrating circuits. In practice the response time of the integrating 
circuits was very much less than the period of the fluctuations and so 
these fluctuations of intensity should not affect the correlation. T o 
summarize, their analysis concludes that the normalized correlation 
should be independent of ionospheric scintillation. This conclusion 
is supported by the observations of Jennison and Das Gupta who state 
that the accuracy of their measurements was not seriously affected by 
the presence of severe scintillations. 

Another interesting point raised by Hanbury Brown and Twiss in 
discussing this work is the effect of the rotation of polarization, Faraday 
rotation, in the ionosphere. A plane wave of angular frequency w 
travelling parallel to the Earth's magnetic field through a uniform 
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ionosphere of thickness H will be rotated in polarization, relative to a 
similar wave in free space by 

where ai (, is the critical frequency, cou is the gyro frequency and it is 
assumed that w^>a>H and to2^>a>c

2. They estimated that the rotation 
of polarization at 100 M H z is of the order of 15 radians. If, therefore, 
there are significant differences between the magnetic fields or the 
ionosphere at the two detectors there wil l be a differential rotation of 
polarization of the waves received from the source. If this difference 
is (f> radians, the normalized correlation wi l l be reduced by cos2<£ in 
an interferometer using two parallel linearly polarized aerial systems. 
It is to be expected that over short baselines of a few kilometres this 
effect would be negligible, but it would be significant over very long 
baselines. It can be reduced either by the use of higher frequencies or 
by making the aerial systems sensitive to both planes of polarization. 

7.2 An Optical Stellar Intensity Interferometer 
7.2.1 The equipment 

As we have just seen, the first test of an intensity interferometer was 
made at radio wavelengths and was completely successful. Following 
this, a laboratory test was made in 1956 to verify that the same principle 
could be applied at light waves and that the correlation could be 
predicted satisfactorily by a semi-classical model of photoelectric 
detection. The next step was to make a practical working interfero
meter, not only to demonstrate the technique, but also to verify that it 
would work in the presence of atmospheric scintillation. A small pilot 
model was built which for reasons of economy was only large enough 
to measure the brightest star in the sky, Sirius. The work of building 
and testing this instrument was carried out at Jodrell Bank in 1955 and 
1956 (Hanbury Brown and Twiss, 1956 b, 1958 b). 

A simplified diagram of the equipment is shown in fig. 7.4. The 
optical system consisted of the two mirrors A x , A 2 which focused light 
on to the cathodes of the photomultipliers P 1 ( P 2 . The mirrors were 

//COC

2COJJ/CCU 2 radians (7.3) 

C o r r e l a t o r 

Integrat ing motors 

—'Variable 
de lay 

C o r r e l a t i o n Noi se 
level 

Fig. 7.4. Outline of an optical intensity interferometer. 
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the reflectors of standard A r m y searchlights and were back-silvered 
paraboloids of borosilicate glass 156 cm in diameter and 65 cm in 
focal length; optically speaking, they were crude, and tests showed 
them to be capable of focusing light from a star into a patch about 8 mm 
in diameter. The mirrors were supported in their standard searchlight 
barrels on altazimuth mounts and are shown in fig. 7.5. For these 
experiments the front glass of each searchlight was removed and the 
barrel itself was extended with aluminium sheet to form a tube about 
2 in long in front of each mirror to exclude extraneous light and to 
minimize the formation of dew on the mirrors. Even so, experience 
showed that these 'dew-caps' were not enough, and on cold nights there 
was often condensation and occasionally ice on the mirrors. This is a 
trouble not experienced by most astronomical telescopes which are 
usually protected by a dome and are mounted in some place with lower 
humidity than the environs of Manchester. However, in the present 
case, where there was no question of forming an image of the star, the 
trouble was cured by mounting a 1 k W electric heater in each search
light barrel directly under the mirror. Although somewhat uncon
ventional in terms of normal astronomical practice, this scheme worked 
well. 

Fig. 7.5. The first stellar intensity interterometer at jodreil Bank (University of 
Manchester) in 1956. 

The azimuth and elevation of the two searchlights were controlled 
manually from a standard Army control pillar carrying an optical 
sight; but, to reduce the tedious work of guiding the system entirely 
by hand, an electric motor was used to rotate the pillar at approximately 
the correct rate in azimuth. 
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The arc lamps were removed from the searchlights and photo
multipliers were mounted in their place; the boxes containing them 
were mounted on sliding carriages so that they could be accurately 
centred and focused and were heavily screened to prevent the reception 
of radio interference. The photocathodes were exposed through 
circular apertures 2-5 cm in diameter and, when observations were not 
in progress, they were covered by detachable caps carrying small 
lamps to simulate the light from the star. The photomultipliers had 
flat semi-transparent cathodes and ten stages of multiplication ( R . C . A . 
type 6342); their spectral response was a maximum at about 400 nm 
and, at that wavelength, their quantum efficiencies were roughly 
15 per cent. The anodes of the photomultipliers were connected by 
coaxial cables to an electronic correlator in an adjacent laboratory. 

In the laboratory the two coaxial cables were brought to a panel 
where the relative delay of the signals could be adjusted to an accuracy 
of about 2 ns by lengths of cable which could be plugged into either 
channel; in this way it was possible to compensate for the varying 
difference in the times of arrival of the light at the two mirrors as the 
direction of the star changed throughout the night. 

After the delays had been equalized the signals were connected to 
the inputs of a correlator. This correlator has been described in 
§6 .1 . As before, the correlation was recorded by an integrating 
motor and the r.m.s. value of the noise at the output was recorded by a 
second integrating motor. The readings of both these motors depen
ded in the same way on the gain of the equipment and the effects of 
changes in gain were eliminated by expressing all the measurements as 
signal/noise ratios, that is to say, as the ratio of the time-averaged 
value of the correlation to the r.m.s. noise or uncertainty in the final 
value. 

7.2.2 Experimental procedure and results 
Observations of Sirius were made at Jodrell Bank on all possible 

occasions between November 1955 and March 1956. Only about half 
of the clear nights could be used, due to moonlight, and the observing 
time was further limited by the need to avoid excessive atmospheric 
extinction at low angles. In the case of Sirius, which reaches a 
maximum of 20° elevation at Jodrell Bank, this limited observations 
to within 2 hours of transit. Even so, that part of England is not noted 
for clear skies and the extinction at 20° elevation was frequently 
excessive; no observations were made when the measured extinction 
exceeded the value for a clear sky by more than 0-75 magnitudes. The 
total observing time over a period of 5 months was 18 hours. In 
addition, about 6 hours of observing time were lost due to failure of 
the equipment. 

The first measurements were made with the two searchlights at the 
minimum possible separation of 2-56 m. T o achieve such a short 
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baseline the searchlights were mounted on a N S baseline so that, at 
transit, one was looking over the top of the other. Subsequently, 
observations were made with E W baselines of 5-35, 6-98, and 8-93 m ; 
because the projected baseline varies with the direction of the star, 
these values are averages taken over the whole observing period. 

At each position the searchlights were guided on Sirius and every 
5 min readings were taken of the two integrating motors and of the 
anode currents of both photomultipliers. Measurements were also 
made of the light contributed by the night-sky. Before and after 
every run the correlator was checked for sensitivity and drift. 

The signal/noise ratios observed at each baseline are shown in 
Table 7.1. 

Baseline Observed Theoretical 
/m signal-to-noise ratio signal-to-noise ratio 

2-56 • 8-50+0-67 -1-9-58 
5-35 -3-59 + 0-67 i 3-60 
6-98 2-65 + 0-67 - 2-69 
8-93 • 0-83 + 0-67 1-59 

The baseline is projected normal to the direction of the star and averaged 
ovor the run. The signal-to-noise ratios are the ratio of the correlation to 

the r.m.s. uncertainty in the correlator output. 

Table 7.1. Theoretical and experimental correlation from Sirius. From 
Hanbury Brown and Twiss (1958 b). 

7.2.3 Comparison between theory and observation 
In order to compare these results with theory, Hanbury Brown and 

Twiss (1958 b) first made an independent estimate of the angular 
diameter of Sirius (6-9 x 10~ 3 seconds of arc) and then calculated the 
signal/noise ratio expected at each baseline. They made these calcula
tions for the actual values of light flux, exposure time and zenith angle 
appropriate to each 5 min interval. The analysis was greatly com
plicated by the fact that the optical bandwidth was wide and extended 
over 200 nm because it had been impracticable to use interference 
filters. It was therefore necessary to take into account changes in the 
spectral transmission of the atmosphere with zenith angle and the 
consequent changes in the spectral density a (equation (5.6)) and 
correlation factor r2(d) (equation (5.8)). The signal/noise ratios for 
each interval were evaluated from equation (5.16) using the appropriate 
values of light flux, spectral density, correlation factor and projected 
baseline. The variation of the partial coherence factor A with spectral 
response was neglected, as it was too small to be significant. The final 
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signal/noise ratios were found by summing the values for each 5 min 
interval, weighted by the square of their individual signal/noise ratios. 
The formulae are too cumbersome to reproduce and are given by 
Hanbury Brown and Twiss (1958 b). The results of these calculations 
are shown in Table 7.1. 

A comparison of the figures in Table 7.1 shows that for the shortest 
baseline (2-56 m) the observed signal/noise ratio was 8-50 + 0-67 
and the theoretical value was + 9-58. In the context of this experiment 
the difference between these values cannot be regarded as significant; 
the difference is roughly 10 per cent and the uncertainty in the theoreti
cal value cannot be much less. Furthermore, no precautions were 
taken to equalize the time delays in the two phototubes and subsequent 
experience suggests that this alone might have been responsible for the 
loss of several per cent in the observed signal/noise ratio. 

5 10 15 
Basel ine in m e t r e s 

Fig. 7.6. Correlation versus baseline for Sirius. The full line shows the theoretical 
variation of T*(d) the normalized correlation for an angular diameter of 
6-9 10 3 seconds of arc. The points show the experimental results together 
with their probable errors. From Hanbury Brown and Twiss (1958 b). 

The theoretical values for the other three baselines are also shown in 
Table 7.1 and are in reasonable agreement with the observations. 
However, a more satisfactory way of showing the variation of correla
tion with baseline is shown in fig. 7.6. For each baseline the measured 
values of correlation were normalized using the relations in equation 
(5.14) to standard conditions of atmospheric transmission and 
observing time. They were then expressed as a fraction of the 
theoretical correlation expected for these standard conditions with zero 
baseline. This procedure converts the observed values of absolute 
correlation into dimensionless fractions of the correlation to be expected 
at zero baseline and, since for this experiment the partial coherence 
factor A s l , they can be compared directly with the theoretical values 
of the correlation factor T2(d). The experimental results are plotted 

92 



in fig. 7.6 together with their r.m.s. errors; the full line shows the 
theoretical variation of T2(d) for Sirius, taking the angular diameter 
to be 6-9 x 10~ 3 seconds of arc. It can be seen that, within the large 
uncertainties of the experiment, the correlation observed from Sirius 
did actually decrease with baseline as one would expect theoretically. 

A n experimental value for the angular diameter of Sirius of 
(7-1 + 0-55) x 10 3 seconds of arc was also derived by finding the best 
fit to the results. Th is value has been corrected theoretically for l imb-
darkening (see §10.3.2) and can be compared with the latest value of 
(5-89 + 0-16) x 10~ 3 seconds of arc measured at Narrabri. In view of 
the practical difficulties of this early experiment, and the fact that it 
was done with almost 'white light', it is not surprising that these two 
results do not agree more closely. 

Finally it must be noted that throughout these experiments Sirius 
was never more than 20° above the horizon and was seen to be scintilla
ting strongly. 

7.2.4 Discussion and conclusion 
The first radio intensity interferometer, described in the first part 

of this chapter, demonstrated the principle of an intensity interfero
meter and also made a significant contribution to the study of the radio 
sources. It also drew attention to one of the principal advantages of 
the technique, the ability to work through a strongly scintillating 
medium. 

The first optical intensity interferometer, described in the second 
part of this chapter, confirmed that the technique could contribute to 
optical astronomy, and drew attention to both of its principal advan
tages—the relative ease with which one can achieve extremely high 
resolving power and the ability to work through strong atmospheric 
scintillation. 

The optical experiment had many obvious weaknesses; for example, 
it did not allow a comparison between the correlation observed with 
and without scintillation. Nevertheless it was a convincing demon
stration and allowed us to proceed with confidence to raise the money 
for the construction of a full-scale instrument, the stellar intensity 
interferometer at Narrabri Observatory. 
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CHAPTER 8 
the Narrabri stellar interferometer 

8.1 General Layout 
The general layout of the interferometer at Narrabri is shown in 

fig. 8.1 The photoelectric detectors were each mounted at the focus 
of two very large reflectors carried on trucks running on a circular 
railway track with a gauge of 5-5 m and a diameter of 188 m. These 
mobile trucks were connected to the control building by cables 
suspended from steel catenary wires which were attached at one end to 
a bearing at the top of a tower in the centre of the circle, and at the 
other to a small tender towed by each truck. When not in use the 
reflectors were housed in a garage built over the southern sector. A 
valuable but expensive feature of this garage was a slot running almost 
the full length of one wall enabling the trucks to be parked inside 
without detaching the cables and hence without disturbing the electrical 
connections. 

The control building which housed the control desk (fig. 8.7), the 
computer, a large air-conditioning plant and various motor generators, 
switchboards, etc., was a two-storey brick building of solid construction 
with a good heat-reflecting roof so that it was possible even in the 
summer at Narrabri to hold the inside temperature to 72 + 2 ° F . It 
was close enough to the central tower to allow the catenary cables to 
pass over its roof. 

8.2 The Reflectors 
The reflectors (figs. 8.2, 8.5) were regular 12-sided polygons roughly 

6-5 m, in diameter, each having a usable reflecting area of 30 m 2 . 
They were mounted on turntables carried by the trucks and were 
capable of three independent motions; they could travel around the 
circular railway track, tilt in elevation about a horizontal axis and rotate 
about a vertical axis on their turntables. These three motions were 
driven by electro-hydraulic motors remotely controlled by servo 
amplifiers. T o ensure smooth rolling motion on the track the wheels 
of the trucks were shaped as sections of a cone with its apex at the 
centre of the track; on the inside rail the wheels were simple rollers but 
those on the outside track had flanges. A great deal of trouble was 
taken to align these wheels very precisely; even so, the inevitable 
'scrubbing' action of the motion on a circular track soon ruined the 
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G A R A G E 

I-'ig. 8.1. (a) An aerial view of the stellar interferometer at Narrabri Observatory. 
(6) The general layout of the interferometer. 
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surface of the original cast steel and we were compelled to make new 
wheels of extremely hard steel. 

The small tenders towed by the trucks took the radial pull of the 
catenary and, to do this, they were equipped with side-thrust wheels 
with vertical axles running on the side of the rails. The tenders also 
carried auxiliary electronic equipment such as the servo amplifiers, and 
a manual control console which was used when driving the reflectors in 
and out of the garage. Since the reflectors were remotely controlled 
and could not be seen by the operator when working at night, we inclu
ded an elaborate array of safety devices to prevent accidental damage; 
for example, long probes extended in front of the trucks to warn against 
collision and a system of interlocks depending on the separation of the 
two reflectors and their distance from the garage prevented the long 
focal probes of the reflectors from fouling each other or the garage. 

The framework supporting the reflecting surface was made of light 
alloy and its bowl was paraboloidal so that all the light from the mirrors 
reached the focus at the same time. Any differences between the 
path lengths from the points on the reflecting surface to the focus were 
small, probably less than 2 or 3 mm. The surface of each reflector 
was a mosaic of 252 hexagonal glass mirrors, each approximately 
38 cm between opposite sides and 2 cm thick. As it was not necessary 
to form a conventional image of the star, the mirrors did not need to be 
figured with conventional optical precision. T o keep down the cost 
they were all ground to the same nominal focal length of 11 m with a 
tolerance of + 15 cm. Again, in the interests of economy, the optical 
quality of the mirrors was specified so that their imperfections were 
roughly equal to the geometrical aberrations of the whole system. 
A programme of ray-tracing, taking the mirrors to be perfect, showed 
that the minimum circle of confusion was 10-85 m from the pole of 
the reflector and all the light was then contained in a circle 8 mm in 
diameter. The manufacturing tolerance on each mirror was therefore 
specified so that at their nominal focal length of 11 m all the light from 
a distant point source passed through a circle 1 cm in diameter and in 
the factory each mirror was tested and marked with its measured focal 
length. The mirrors were then mounted so that their actual focal 
lengths corresponded as closely as possible to the theoretical focal 
length for each position on the reflector. Thus, by making use of the 
spread of focal lengths in manufacture, a close approximation to a 
true paraboloidal mirror was obtained. 

The mirrors themselves were front-aluminized and coated with 
silicon dioxide. It is worth noting that, even after ten years' work at 
Narrabri, they were still in good condition. We washed them at 
intervals of about six months with distilled water to which was added 
a mild detergent. Each mirror was mounted on a three-point spring 
suspension and its orientation could be adjusted from the back. We 
cemented an electrical heating pad to the back of each mirror and 
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experience showed that about 12 W per mirror was sufficient to keep 
them free from dew and ice. 

The optical system at the focus was mounted on a steel tube about 
1 1 m long which projected from the centre of the reflector. Th is tube 
was guyed by stainless-steel rods attached to a simple framework of 
steel beams not directly coupled to the framework of the bowl suppor
ting the mirrors. O n each reflector there were two optical systems in 
separated boxes. One contained the main phototube and the other an 
auxiliary star-guiding phototube. The optical system of the main 
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phototube is illustrated in fig. 8.3. The converging beam from the 
reflector was collimated by a negative lens with a diameter of 9 cm and 
a focal length of about 10 cm and was then passed through an inter
ference filter 9 cm in diameter. In order to maximize the correlation 
the two optical filters were matched and uniform over their surfaces. 
Furthermore, they had a high transmission in the pass-band and a very 
low transmission outside it and, in order to maximize the spectral 
density factor, a in equation (5.6), their pass-bands were as rectangular 
as possible. The original filters used at Narrabri had a central wave
length of 438-5 nm with a pass-band of + 4-0 nm. However, this 
wavelength proved to be too close to the H y (434-0 nm) line of the 
Balmer series, which is very wide in some A stars. Finally a wave
length of 443-0 nm was chosen; although this coincides with an inter
stellar absorption line, we were concerned with bright stars in which 
the feature is weak. The transmission curves of the two filters used 

Light f r o m 
r e f l e c t o r Photocathode 

Negative Interference Posit ive Iris 
lens f i l te r lens diaphragn 

Fig. 8.3. The optical system. 

100 ' / . 

4 3 0 4 4 0 4 50 
Wavelength / n m 

Fig. 8.4. Transmission versus wavelength of the two interference filters. 
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in most of the observations are shown in fig. 8.4. Their transmission 
at all wavelengths in the range of 400-700 nm outside the pass-band, 
never exceeded 0-1 per cent. 

After passing the filter the light was focused by a positive lens with a 
focal length of 10-7 cm, through an adjustable iris diaphragm, onto 
the cathode of a photomultiplier. The photocathode of the most 
recent phototubes used at Narrabri had a maximum useful diameter of 
about 45 mm. The size of the 'image' on this cathode and the field of 
view arc discussed later. 

Fig. 8.5. Rear view of reflector being driven out of the garage by Dr. John Davis. 

The optical components were mounted at the focus in a light-tight 
fibre-glass box coated with copper to form a shield against radio 
interference. The phototube was enclosed by a Mumetal screen to 
shield it magnetically. The front of this box was closed by a shutter 
remotely operated from the control desk. There was also a small 
pea-lamp mounted inside the box so that the photocathode could be 
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illuminated when the shutter was closed. A bad feature of the 
mounting was that the central steel tube obscured some of the reflector 
as seen from the photocathode of the main phototube; the light from 
about 14 mirrors in the mosaic was lost in this way. 

8.3 Guiding and Control 
The movements of the two reflectors were controlled by an analogue 

computer which, given the sidereal time, the declination and right 
ascension of the star, and the latitude of the Observatory, calculated 
the azimuth and elevation of the chosen star. T o follow the star in 
azimuth the reflectors moved around the track, and to follow it in 
elevation they tilted about a horizontal axis. At all times the line 
joining the two reflectors, which we shall call the baseline, was held 
at right-angles to the direction of the star; this was essential, not only 
to preserve a constant resolving power, but also to ensure that the light 
reached the two reflectors simultaneously. The length of the baseline 
could be varied from a minimum value of about 10 m to a maximum of 
188 m. T o make the two reflectors look in the same direction they 
were rotated on their turntables through half the angle subtended by 
the baseline at the centre of the track. T o follow a star which transits 
north of the zenith the reflectors looked outwards from the centre of 
the track, and to follow a star south of the zenith, they looked inwards. 
Th i s arrangement was necessary because the garage obstructed the 
extreme southern sector of the track. 

O n entering and leaving the garage the reflectors were controlled 
manually from a console on each tender. When they were clear of the 
garage a rail-operated switch allowed them to be controlled from the 
main desk in the control building. 

The computed values of azimuth and elevation had an r.m.s. error 
of about ± 2-5 minutes of arc. However, these errors were usually 
small compared with the uncertainty in the pointing of the reflectors 
due to irregularities in the track which could introduce random errors 
of up to 15 minutes of arc. The combined effect of both these errors 
was removed by the use of an automatic photoelectric star-guiding 
system which employed a second phototube mounted at the focus of 
each reflector. Th i s auxiliary phototube, which made use of one 
mirror of the mosaic, viewed the star through a rotating shutter and 
provided error signals corresponding to the azimuth and elevation of 
the star with respect to the optical axis of the reflector. These error 
signals were then used to correct the elevation and turntable angles 
transmitted by the computer to the appropriate reflector. It must be 
noted that the azimuth corrections were applied to the turntable motion 
and not to the position of the reflector on the track. Apart from con
siderations of dynamical stability, it was essential that the corrections 
should not alter the positions of the reflectors on the track since the 
baseline must always be constant in length and normal to the direction 

100 



Fig. 8.6. The two reflectors of the stellar interferometer in 1972. 

The control desk of the stellar interferometer. One reflector can be seen 
through the window. 
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of the star. Although the irregularities in the track disturbed the 
pointing of the reflectors, they did not significantly alter the length and 
orientation of the baseline. 

The performance of the star-guiding system was monitored by a 
television camera at the focus of each reflector, and we found that the 
pointing accuracy depended on the speed of the trucks and on the local 
condition of the track. The maximum error was about + 3 minutes of 
arc and the r.m.s. error was close to + 1 minute of arc; in practice, once 
the reflectors were ' locked' they tracked the star without any further 
attention. Finally it is interesting to note that, because the star-
guiding phototubes were mounted at the foci together with the main 
phototubes, they automatically compensated for the pointing errors 
due to sag of the long focal poles. 

8.4 The Phototubes 
T o be suitable for use in a stellar interferometer a phototube must 

have a photocathode large enough to accommodate the 'image' of a 
star. As mentioned later, the 'image' in this case was roughly 
25 x 25 mm and could be accommodated on a standard photocathode 
with an effective size of about 45 mm. Given an adequate size of 
photocathode, the most important parameters are the quantum 
efficiency (a), the excess noise (//.— l)//x, and the bandwidth or rise-
time. From equation (5.17) it can be seen that the signal-to-noise 
ratio varies directly as the quantum efficiency and excess noise, but 
only as the square root of the bandwidth ( A / ) 1 ' 2 of the whole electronic 
system. The first phototubes used at Narrabri ( R . C . A . type 7046) 
had flat semi-transparent antimony-caesium cathodes with a useful 
diameter of about 11 cm, a quantum efficiency of about 13 per cent at 
440 nm and 14 stages of multiplication with an effective bandwidth 
(3 dB) of about 40 M H z . Dur ing the subsequent years we kept in 
close touch with the development of phototubes and introduced 
improved types as soon as we could get hold of them. Altogether five 
different types of phototube were used in ten years. The last type 
( R . C . A . Type 8850), installed in 1970, had a semi-transparent 
potassium-antimony-caesium cathode with a useful diameter of about 
45 mm, a quantum efficiency of about 25 per cent at 440 nm and 12 
stages of multiplication. The first dynode of these tubes was coated 
with gallium phosphide and had a very high gain ( « 3 0 ) , thereby 
reducing the excess noise in the multiplier chain and improving the 
signal/noise ratio by about 20 per cent compared with previous photo
tubes; under working conditions their effective bandwidth (3 dB) was 
about 60 M H z . 

As a consequence of this continuous improvement the signal/noise 
ratio of the interferometer, on a given star, increased by about three 
times since it was first used to measure Vega in 1963. The majority 
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of this increase came from the steady improvement of quantum 
efficiency which contributed a factor of about 2; additional smaller 
factors came from improvements in the electrical bandwidth and 
excess noise. 

liefore installation on the reflectors the phototubes were tested in 
tin laboratory. Thei r focusing controls were preset and their rise-
times measured using nanosecond light flashes from a gallium-arsenide 
junetion diode. The overall delay through the tube was also measured 
as ,i function of the supply voltages. As far as possible the supply 
voltages were kept constant for all stars and the gains of the phototubes 
were adjusted for different stars by pre-set controls which altered the 
voltages on either one or two dynodes in the multiplier chain in such a 
way that, to a first approximation, the overall delay was independent of 
the gain. Because the gain of all phototubes was really too high for 
this application, we had to run all tubes well below their rated voltage, 
which was undesirable because it reduced their bandwidth. The gain 
of each tube was individually adjusted for each star so that the r.m.s. 
o i n p u t voltage on the cable to the correlator was roughly the same 
( c 1 mV) , provided only that the associated anode current was less 
than about 100 /xA. In the case of the brightest stars Sirius and 
Canopus, it was necessary to exceed this l imit and to run the tubes with 
anode currents of up to 200 jiA. Experience showed that, under these 
conditions, their gain slowly decreased with time. 

8.5 The Correlator 
At the output of each photomultiplier the fluctuating and steady 

components of the anode current were separated by a simple resistance-
capacity filter. The steady component was connected directly to an 
anode-current integrator in the correlator. The fluctuating com
ponent was connected to the correlator by a low-loss coaxial cable, 
directly from one reflector and via a phase-reversing switch from the 
other. These coaxial cables were heavily screened; a cable with a 
solid aluminium outer conductor was used for the catenary, a double-
screened flexible cable was used on the reflectors and at the central 
tower the signals were connected to the correlator by double-screened 
cables running in copper pipes. 

A simplified outline of the correlator is shown in fig. 8.8. Following 
the earlier design described in §6.1 we used double phase-switching. 
The phase of the signal from one phototube was inverted 10000 times 
per second by a 5 k H z phase-switch mounted close to the input of the 
correlator; the phase of the other signal was inverted ten times per 
second by a phase-switch mounted close to the focus of the reflector. 
The 10 s switch was mounted in this way so that any radio signals 
picked up on the long cables to the correlator were not phase-switched 
and therefore did not produce spurious correlation. After phase-
switching the signals were amplified by wide-band amplifiers, whose 
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pass-band was limited to roughly 20-100 M H z ; frequencies below 
20 M H z were severely attenuated to reject the majority of radio 
signals, and between 20 and 100 M H z the filter networks produced a 
rising characteristic to compensate for the falling response of the long 
cables and of the phototubes. The overall bandwidth between 3 dB 
points of the whole system, including the phototubes, was about 
55 M H z . 

Photomu I ti pile r tubes — 

_ 1 0 S Phase s w i t c h 

C a t e n a r y cable — 

B u f f e r amp.-

5KHz Phase switch—I 

Pre —ampl i f iers 

Ma in amp l i f i e rs 

Multiplier 

Synchronous — * 
in tegra to r 

Data handling 
S y s t e m 

To p r i n t e r 

Fig. 8.8. Outline of the correlator. 

The outputs of the main amplifiers were applied to a linear multiplier 
which proved to be the most difficult single component to develop. 
If the input voltages to the multiplier are ex, e2, then one major problem 
is to reduce unwanted components such as e,2, e 2

2, e ^ 3 , e2e^, etc., to 
negligible values compared with the desired product e±e2 in the output. 
These spurious components must be reduced to very low levels; they 
are undesirable, not so much because they increase the noise but 
because they tend to produce spurious correlation through various 
second-order processes which in turn produce drifts in the zero of the 
correlator output. These drifts wil l be discussed later. In the early 
stages of the work at Narrabri a variety of multipliers was developed, 
using balanced arrangements of two or four vacuum tubes, but none 
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of them was satisfactory. The final design was based on a multiplier 
originally developed by Frater (1964), and the circuit and performance 
have been discussed by Al len and Frater (1970). Since it is such an 
important component of an intensity interferometer and has proved so 
difficult to develop, the circuit is shown in fig. 8.9. The basic mult i 
plier consists of the four transistors T 1, 2, 3, 4. One input voltage 
(No. 1) from the main amplifier is applied via T 1, 2, to the emitters 
of the balanced pair T 3, 4. The other input (No. 2) is applied 
directly to the base of T 4. In his paper Frater shows that the collec
tor currents of T 3, 4, contain, in push-pull , a component linearly 
proportional to the product of the two inputs. Transistors T 5, 6 ,7, 
convert this push-pull output into a single-ended output suitable to 
the synchronous integrator which followed the multiplier. Al len and 
Frater found that the multiplier was linear over a wide range of input 
voltages and that the levels of the unwanted components in the output 
were acceptably low; experience at Narrabri showed that it was 
adequately stable and easy to adjust. 

In the output of the multiplier the presence of correlated signals 
from the two phototubes produced a 5 k H z square wave whose phase 
reversed every 10 s. Th is wave was submerged in noise and, to reduce 
the noise, the bandwidth of the multiplier output was limited to 50 k H z 
which is the minimum value necessary to pass all the significant 
harmonics of the 5 k H z square wave. Even so, the r.m.s. level of the 
square wave was always less than 1 per cent of the noise in the multiplier 
output. The selective amplification of this square-wave was carried 
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out by the synchronous integrator illustrated in fig. 8.10. The two 
transistors T 3, 4, were switched at 5 k H z , synchronously with the 
phase-switch, so that alternate half-cycles of the wave were stored in 
the capacitors Cj and C 2 . In effect, this circuit acts as a comb filter 
tuned to the fundamental and odd harmonics of the 5 k H z signal. 
Frater (1965) shows that the effective bandwidth at each of these 
frequencies is \J2TTR(C1 + C 2 ) and, in the present case, was 8 H z . 
Thus, in the absence of correlation, the output of the synchronous 
integrator was the sum of the random noise in five 8 H z bands centred 
on 5, 15, 25, 35 and 45 k H z ; if a correlated signal was present it 
appeared as a 5 k H z 'square' wave whose phase reversed every 10 s. 

Fig. 8.10. The synchronous integrator. From Allen and Frater (1970). 

Following the synchronous integrator there was a conventional 
synchronous rectifier at 5 k H z . The output of the rectifier was then 
integrated for 10 s, corresponding to one position of the 10 s phase-
switch, in a very precise linear integrator. 

Finally, the data-handling system, following the practice of the 
earlier correlator, acted as a synchronous rectifier for the 10 s phase-
switch and then integrated the result. As before, this system had 
the advantage that the final stage of synchronous rectification was 
numerical and did not contribute to the zero-drift of the correlator 
output. It worked as follows: the output of the 10 s integrator, 
following the synchronous integrator, was read every 10 s by a digital 
voltmeter and displayed together with its sign ; the integrator was then 
re-set to zero, the 10 s phase-switch operated and the cycle repeated. 
A sign-sensing unit examined the sign of the digital voltmeter reading 
and if it was positive, it was accumulated in a number store S t ; if it 
was negative, it was put in a number store S 2 . In the next 10 s 
cycle the role of these two stores was reversed. After ten such periods 
of integration, corresponding to a total time of 100 s, the contents of 
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the two number stores Sj and S 2 were read out, decoded from binary 
to serial decimal form and printed. The printer then took the 
difference in a sub-total register which was also printed every 100 s; 
this number was the sum, or long-term integration, of the correlator 
output. 

In addition, the anode currents of the two phototubes were also 
averaged over the whole 100 s period by linear integrators and were 
printed. Thus, every 100 s the printer printed a line of numbers— 
the two numbers in the stores Sj, S.,, their accumulated difference, 
and the anode currents of the two phototubes. 

As we have already noted in §6.1, the principal problem in designing 
tin- correlator was to eliminate very small but irregular drifts in the 
zero level of the output. In practice it proved very difficult to identify 
the sources of the drifts because they were so small and variable and 
it took so long to make each measurement. The main sources were 
(1) coupling between the inputs to the correlator, (2) external radio 
signals, (3) amplitude modulation of the input signals by the phase-
switches, and (4) effects due to the asymmetrical amplitude distribution 
of the signals from the phototube. A simple calculation shows that, 
to avoid spurious correlation due to coupling between the inputs, an 
isolation of about 120 dB is required; this was achieved by the use of 
heavily screened cables. The second effect, correlation produced by 
external radio signals, was serious in the original installation at Narrabri 
but was eliminated partly by screening the cables and partly by 
rejecting frequencies below 20 M H z . The third effect, spurious 
correlation due to unwanted amplitude modulation in the phase-
switches, is discussed in some detail by Allen and Frater (1970), who 
show how this correlation is produced by non-linearities in the multi
plier. Th i s particular trouble was reduced to acceptable levels by the 
use of an adequately linear multiplier and by reducing amplitude 
modulation by the phase-switches to a low level. A t Narrabri the 
phase-switches, due to difference in gain in their two positions, intro
duced less than 1 percentof amplitude modulation over the whole band
width of the correlator. Lastly, there were the effects produced by the 
asymmetrical nature of the input 'noise'; thus, for a star of magnitude 
+ 2-5, the number of photoelectrons emitted per second from the 
photocathodes was only about 2 x 10 8 and each gave rise to a pulse of 
duration about 10 ns. It follows that the output signal from the 
phototubes consisted of superimposed pulses and that, on the average, 
there were only two pulses at any given moment. Under these 
conditions the amplitude distribution was markedly asymmetrical, all 
the larger peaks being in one direction. These peaks swung the 
amplifiers and the multipliers over a wide range of their characteristics, 
first in one direction and then in the other as the phase-switch reversed. 
Non-linearities in the amplifiers and the multiplier converted these 
phase-reversals into modulation products at the phase-switching 
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frequencies and produced small spurious correlations which tended to 
vary with the signal level and precise balance, and hence temperature, 
of the multiplier. These effects were reduced and stabilized, but 
not completely eliminated, by the use of the linear multiplier described 
above and by keeping the input voltages from the phototubes within 
the same fairly narrow range of levels for all observations. 
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Fig. 8.11. The zero-drift of the correlator at Narrabri. The full line is a histogram 
of the correlation measured in runs of 12 hours' duration on uncorrelated light 
sources; the broken line is the expected distribution for a perfect correlator 
with no zero-drift. From Allen and Frater (1970). 

T o increase the stability of the correlator and in particular to 
stabilize any residual zero-drifts, the whole equipment was totally 
enclosed in a metal cabinet and cooled with air at 72 + 2° F . A l l 
supply voltages were well stabilized and the equipment was run 
continuously day and night throughout the observing programme. 
When the correlator was not measuring a star, dummy measurements 
were made with the phototubes illuminated by small lamps giving the 
the same light flux as the star. Under these conditions the correlator 
should, of course, register a total correlation of zero with a dispersion 
equal to the statistical uncertainty due to the noise in the correlator 
output. The solid line in fig. 8.11 shows the total correlation measured 
on dummy runs of 12 hours' duration during the first six months of 
1969. The broken line shows the expected distribution of measure
ments for a correlator with no drift but with the same output noise. 
It can be seen that, although the correlator was not perfect, the mean 
drift over 12 hours was less than the statistical uncertainty in the output 
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due to noise. It should be remembered that the effect of any mean 
drift was reduced by the observing procedure in which the output of 
the correlator was observed every day in a dummy run lasting at least 
12 hours; the appropriate three-day running mean of this output was 
then subtracted from the correlation observed from the star. 

There is one further fact about the correlator which is worth 
recording. About 5 per cent of the noise in the output was due to 
sources within the correlator and not to the input signals. The 
majority of this noise was generated in the first stage of the amplifiers. 

The first description of the correlator at Narrabri was given by 
Browne (Hanbury Brown and Browne, 1966) and a more recent one 
by Al len and Frater (1970). 

8.6 An Alternative Design of Correlator 
In the early stages of the work at Narrabri the difficulties encountered 

in stabilizing the zero level of the correlator output suggested that it 
would be worth while to explore an alternative design. Since most 
of the trouble appeared to be due to unwanted amplitude modulation 
of the signal by the phase-switches and to the asymmetric character of 
the signal itself, it was decided to build an amplitude-limiting correlator 
in which the signals were passed through a bi-directional amplitude 
limiter before multiplication. In this way it was hoped to remove all 
the effects due to the amplitude of the signals and to preserve only their 
relative phase. It is, of course, to be expected that such a non-linear 
operation wi l l cause loss of signal/noise ratio since some of the informa
tion is carried by the amplitude fluctuations. However, if the overall 
signal/noise of the correlator is limited by irregular drifts in the output 
then some loss can be tolerated in exchange for improved stability. 

As a first step a theoretical investigation of the effects of amplitude 
limiting was carried out by Yerbury (1967). He calculated the loss 
of signal/noise ratio, relative to a completely linear correlator, as a 
function of the limiter level for the case where only one signal is limited 
and also for the case where both are limited. He defined the loss 
factor as F, where F= 101og 1 0 [ (S/N) 1 / (S/N) 0 ] decibels and ( S / N ^ , 
( S / N ) 0 represent the output signal/noise ratios of the amplitude-
limiting correlator and the linear correlator respectively. In the case 
where only one signal is limited he found F= —0-525 dB, correspon
ding to a loss in signal/noise of about 11 per cent; this result assumes 
that the signal is limited at a level very small compared with its r.m.s. 
value. In the case where both signals are limited to this low level, 
he found F= — 1-081 dB, corresponding to a loss of signal/noise ratio 
of 22 per cent. Th is loss decreases rapidly as the limiting level is 
raised but so, presumably, do the benefits of the limiter. 

As a second step Yerbury (1968) built an amplitude-limiting correla
tor and compared it directly with the linear correlator at Narrabri 
which we have just described. He first measured the signal/noise 
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ratio of both correlators on an 'artificially' correlated signal produced 
by cross-coupling the two phototubes of the interferometer through an 
attenuator network. He found the loss of signal/noise ratio in the 
amplitude limiting correlator, relative to the linear correlator, to be 
1-30 ± 0-29 d B ; the theoretical value, based on the actual limiting level 
used in these experiments, was 0-90 dB. He then repeated this 
comparison under more realistic conditions by observing the bright 
star a Eridani with both correlators. Th is test confirmed that there 
was a loss of signal/noise ratio in the amplitude-limiting correlator of 
1-72 ± 0 4 6 dB. 

The output zero level of the amplitude limiting correlator was found 
to be almost completely free of drift, provided that the signal was 
limited at a level small compared with its r.m.s. value. This conclusion 
was based on a few runs of 13 hours' duration with different limiter 
levels. T o establish the zero-drift with certainty would have required 
tests lasting several months. However, these were not carried out 
because, by the time the amplitude correlator was built, the perfor
mance of the original linear correlator had been improved to the point 
where its zero drift was no longer a significant limitation to the signal/ 
noise ratio. It was therefore decided that the loss of roughly 1-5 dB 
in signal noise, or about 30 per cent, was too high a price to pay for 
the introduction of an amplitude-limiting correlator and the new 
correlator was not used. 

In conclusion, this work confirmed that an extremely stable correlator 
can be built using amplitude limitation. It is an attractive technique 
provided that the small loss in signal/noise can be afforded. 
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CHAPTER 9 
how the observations at Narrabri were made 

9.1 Focusing the Reflectors 
The reflectors of the interferometer were ready for their first test in 

October 1962. As a first step, a small telescope was rigidly fixed to one 
end of the axle supporting the mirror framework in order to define 
permanently a line parallel to the optical axis. Two lights were 
mounted on a horizontal bar on a tree about one mile away so that they 
could be seen by the reflector when it was parked in the garage; the 
other reflector was temporarily removed. The horizontal separation 
of the lights was equal to the distance between the fixed telescope and 
the centre of the reflector. The reflector was pointed so that one light 
was central in the telescope and the reflector itself was then 'focused' on 
the other light as follows: a mobile tower was positioned so that an 
observer could see the image of the distant light on a ground-glass 
screen at the focus, the distance of this screen from the true focus 
being adjusted to allow for the finite distance of the light. The indi
vidual mirrors were then aligned to give the minimum possible size 
of image on the screen which proved to be a roughly circular patch 
13 mm in diameter corresponding to an angular field of about 4 
minutes of arc. 

following this adjustment the screen was moved to the correct 
distance from the reflector for sources at infinity, and a remotely 
operated 35 mm camera was mounted so that pictures of the image 
could be taken under working conditions. The reflector was pointed 
at Jupiter and the image was photographed over a wide range of 
elevations. To our disappointment the size and shape of the image 
varied greatly with elevation; at 70° elevation it deformed into an 
ellipse measuring 60 x 25 mm. A thorough investigation of the 
trouble was made and showed that the weight of the reflector was 
bending the main steel tube carrying the framework; the maximum 
deflection of this tube was 3-5 mm, which was sufficient to distort the 
reflector framework and enlarge the image. 

It was not easy to modify the structure at Narrabri and after some 
discussion we decided to accept the larger image and to evolve an 
optimum method of focusing the reflectors. We first measured the 
movements of the individual mirrors with a television camera mounted 
at the focus and, using these data, we evolved a system of aligning the 
mirrors into a predetermined pattern on the distant light. This 
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pattern was designed so that the mirrors produced a minimum size of 
image at about 50° elevation and over most of the working range of 
elevation, the image was roughly 25 x 25 mm. This size could be 
accommodated on the photocathode which had a diameter of 45 mm 
and corresponded to an angular resolution in the sky of about 8x8 
minutes of arc; the angular field of view of the whole photocathode was 
about 15 minutes of arc. Experience showed that this alignment of 
the mirrors had to be repeated at intervals of about six months. 

The star-guiding system depended on only one mirror in the mosaic 
and this was aligned so that when the star-guiding system was iocked-
on' a star the centre of the main image from the reflector fell on to the 
centre of the cathode. An initial adjustment was made when the 
reflectors were aligned on the distant light, but a more precise adjust
ment was made with both reflectors tracking a star. 

9.2 Equalizing the Time Delays 
Another important adjustment which had to be made before every 

sequence of observations was to equalize the electrical time delays in 
both arms of the interferometer. As already noted in § 8.4, the time 
delays in the phototubes were measured, as a function of voltage, in 
the laboratory with pulsed light. Once the working voltages were 
chosen, any difference between the time delays in the two phototubes 
was compensated by an extra short length of cable in the appropriate 
output. The electrical lengths of the long cables from the phototubes 
to the correlator were equalized by disconnecting the cables from the 
phototubes and connecting them to a standard source of wide-band 
noise—a saturated diode—mounted on the wall of the garage. The 
correlation due to this standard source was measured as a function of 
the length of small pieces of cable added to one or other of the input 
cables to the correlator. When the correlation was a maximum the 
electrical lengths were equal and in practice it was simple to equalize 
them to better than 5 cm in this way. 

As a final and important check on the whole system a bright star was 
observed with minimum baseline and the normalized correlation 
measured as a function of small lengths of cable added first to one cable 
and then to the other. A typical 'delay check* using Sirius is shown 
in fig. 9.1. 

9.3 Measuring the Zero-drift, Gain and Noise Level of the Correlator 
The correlator was kept running continuously, 24 hours a day, 

during an observing programme. When not observing a star the 
light-tight shutters were closed and the phototubes illuminated by 
small lamps. The light from these lamps being uncorrected, the 
output of the correlator became a measure of spurious correlation or 
zero-drift. For each period of 24 hours, measured from noon to 

112 



noon, the total correlation for the dummy runs was recorded as a 
measurement of the drift D; the r.m.s. uncertainty in this drift ( ± a/}) 
was calculated from the duration of the dummy runs and the r.m.s. 
noise (tr o l i 8 see later) in the correlator output. These data were used 
as a check on the correlator and to correct the stellar observations for 
drift as described in § 10.1. 

-100 - 5 0 0 50 100 
(Centimetres) 

Cable added to reflector B Cable added to reflector A 

F i g . 9 .1 . A 'delay check' on Sir ius. T h e points show the normalized correlation 
observed wi th different small additional lengths of cable inserted in the cables 
to each reflector. 

The gain of the correlator was measured directly before and after 
every night's programme on a star. The cables were disconnected 
from the phototubes at the focus of each reflector and connected to the 
standard noise generator in the garage. The correlation was recorded 
for several minutes so that the uncertainty in the measurement of gain 
was less than 1 per cent. The overall gain of the system depended 
not only on the correlator but also on the loss in the cables, which varied 
with the outdoor temperature. There was a change of roughly 5 per 
cent in the gain for a change of 20 K. The temperature was therefore 
recorded when the gain was measured and at half-hourly intervals 
throughout the night. The gain for any particular observation during 
the night was found by linear interpolation. 

The noise level at the output of the correlator was monitored every 
day. The r.m.s. fluctuation in about 100 'cycles' (each cycle corres
ponding to an observation of 100 s) was computed and used to find 
CTohs the r.m.s. uncertainty in a single cycle. The average anode 
currents of the phototubes over the same period were also computed 
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from the print-out. These data were then used to find a normalized 
or standard uncertainty aHTD. It is simple to show that 

aO R Scx:G c(G p lG p 2<^ 2>p (9.1) 

where G c is the gain of the correlator, G p l , G p 2 are the gains of the 
phototubes and ilti2 are the phototube anode currents. Hence we 
can define a standard uncertainty CTstd which is independent of the 
light fluxes and the gain of the correlator but not of the phototubes, as 

^ T T . = ^ O B S / « ^ > 2 > 1 , 2 G , ) . (9.2) 

This standard uncertainty was computed for each day and was used as 
a check on the correlator and also in the analysis of the observations. 
In practice the value of o-STD was usually averaged over a few days and 
used to compute the uncertainty CTc in any observation of duration n 
cycles, where 

- C = « ' S T D G C ( v 2 ) 1 ' V » 1 ' 2 (9.3) 

and the appropriate anode currents of the two phototubes and 
G c is the correlator gain. 

9.4 Choosing the Baselines and Exposure Times 
Two important factors governing the total time spent in measuring 

a star for a given accuracy in the result are the choice of the baselines 
and exposure times. At Narrabri this choice was particularly critical 
because the exposure times were so long. 

If we assume that the star is single, then the angular diameter of the 
equivalent uniform disc can be found from measurements at only two 
baselines; furthermore, it can be shown that the use of only two base
lines yields the highest precision in the final result for a given total 
exposure. Ideally one of these baselines should be zero which, with 
the Narrabri instrument, led to a choice of the minimum possible 
baseline (d1= 10 m) as the first baseline for all stars. The optimum 
length of the second baseline (d2)} together with the ratio of exposures 
(T2jTx) at the two baselines, was calculated for an estimated angular 
diameter (6) of the star. As an example, fig. 9.2 shows how the 
uncertainty ae in the final measured angular size varies with d2 and 
T%jTx for a given total exposure time. These particular curves were 
calculated for the case where 7rd10jX = Q'S, which corresponds to the 
representative case of a first magnitude main sequence star observed 
with a first baseline of 10 m (rf^lOm, A = 443-0nm, 0=l-5xlO-B 

seconds of arc). It can be seen that in this particular case, the most 
precise measurement of 8 is to be expected when T 2/7\ = 4 and the 
second baseline has a length given by 7rrf20/A = 2-25. 
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In practice such calculations were always used to find the length of 
the second baseline but were only used as a rough guide to the ratio of 
the observing times, as in choosing these times there were other 
considerations to be taken into account. For example, to minimize the 
effects of possible systematic errors with elevation angle, every effort 
was made to observe stars over exactly the same range of elevations at 
each baseline; furthermore, to reduce any systematic errors which 
might vary slowly with time, observations at the two baselines were 
interleaved on successive nights as far as possible. These procedures 
usually led to a ratio T%\TX^2 which is significantly less than the 
theoretical optimum. Inspection of fig. 9.2 shows that the corres
ponding theoretical loss of precision is only a few per cent. 
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F i g . 9.2. The optimum baselines and exposure times for measurements at two 
baselines. The curve (o$) shows the uncertainty in measurements of (0) the 
angular size versus (T2jTi) the ratio of exposures at the two baselines. The 
line (d2) shows the corresponding opt imum length of the second baseline. 
T h e curves are calculated for the shortest first baseline possible at Narrabri , 

9.5 Observational Procedure 
Immediately before an observing programme the gain of the correla

tor was calibrated. The two reflectors were then driven out of the 
garage by hand using the controls on each tender. When they were 
at a safe distance from the garage an automatic interlock allowed control 
of their movements to be transferred to the desk in the central control 
building. They were then driven by remote control to approximately 
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the correct positions for starting the observations and a check made 
by calibrated marks on the track that the actual positions of the reflectors 
corresponded to the positions indicated on the control desk. They 
were then set manually from the control desk so that their positions in 
three coordinates—track position, turntable and elevation angle - were 
within a few minutes of arc of the position demanded by the computer. 
Control was then switched from manual to automatic and the reflectors 
were completely controlled by the computer. If everything was right 
the reflectors should by then be pointing at the star, but in practice 
there were always pointing errors of several minutes of arc due to 
imperfections in the track. To correct these errors the star-guiding 
system was switched on and the direction of the star relative to the 
optical axis of the reflectors was indicated by bright spots of light on 
two cathode-ray tubes on the control desk. These spots were centra
lized manually by controls which corrected the turntable and elevation 
angles transmitted to each reflector; the star-guiding system was then 
switched from manual to automatic and kept both reflectors pointing 
at the star with an r.m.s. error of about 1 minute of arc. 

When both reflectors were 'locked-on* a star, the small lamps in 
front of each phototube were switched off, the shutter opened and the 
run on the star started. Every half hour throughout the night readings 
were taken of the computed azimuth and elevation of the star and 
compared with a local ephemeris for the star as a check on the computer. 
At the same time we recorded the pointing corrections made by the 
star-guiding system, the anode currents of both phototubes, the voltage 
levels in the correlator, the temperature and the wind speed. At 
various times during the night the contribution of the light from the 
night-sky to the total light flux was measured by pointing the reflectors 
about half a degree away from the star for two or three cycles of the 
correlator. 

As a quick visual check on the behaviour of the whole system a 
graphical record was always made of the cumulative correlation, 
showing it as a function of the number of 100 s cycles. An example is 
given in fig. 9.3. It is plotted for a period of 24 hours from noon to 
noon. The first part from cycle 0 to cycle 160 is a dummy run where 
no correlation is expected ; the second part from cycle 200 to cycle 500 
is an observation of the star j8 Crucis at two baselines and the increase 
in the cumulative correlation can be seen clearly; the third part from 
cycle 550 to cycle 750 is a continuation of the dummy run. 

When the run on the star was completed (usually about one hour 
before dawn) the shutters were closed and the reflectors put back in the 
garage. The gain of the correlator was measured and the small lamps 
adjusted to give phototube anode currents equal to the average observed 
on the star. 

Observations were not usually made on stars below 30° elevation 
nor when poor atmospheric transmission reduced their light flux below 
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Fig. 9.3. Record of the cumulative correlation for 24-hour period (20-21 May 1965). 

about 70 per cent of its normal value, nor when the contribution of 
moonlight to the total flux exceeded about 10 per cent of the total. 
Every effort was also made not to expose the reflectors to high wind, 
rain or hail. If the wind exceeded about 25 knots the reflectors were 
returned to the garage; high winds reduced their pointing accuracy 
and could have upset the alignment of the mirrors; furthermore, one 
was always anxious that the wind might get even stronger and do some 
structural damage. While it was not really necessary to avoid rain, 
there was always the possibility that it might turn to hail, which at 
Narrabri can flatten a wheat crop in a few minutes and might be 
expected to damage the front-aluminized mirrors. Experience of 
the past ten years shows that observations were made on about 60 
per cent of all nights on which they were scheduled. 



CHAPTER 10 
analysing the data 

10.1 The Normalized Correlation 
The first step in analysing the data for a single night was to correct 

the observed correlation for zero-drift. A three-day running mean 
of the zero-drift (D ± aD) centred on the date of observation was com
puted from the daily measurements of drift (see §9.3) and subtracted 
from the average correlation observed per cycle c(d) to give the true 
average correlation c0(d) for that night, so that 

This procedure was based on two assumptions; first, it was assumed 
that the drift during a dummy run with constant light flux was the same 
as that when observing a star with varying light flux; secondly, the 
drift was assumed to be steady over periods of three days. We made 
every effort to ensure that both these assumptions were justified. 
For example, the small lamps in front of the phototubes were adjusted 
for each dummy run so that the average phototube currents were equal 
to those actually observed on the star; furthermore, the correlator was 
run continuously under constant conditions of supply voltage and 
ambient temperature. The zero drift itself was checked every day 
and was normally small but not negligible; it seldom exceeded about 
5 per cent of the zero-baseline correlation from a first magnitude star. 
If it was found to be abnormally high, all the associated results were 
rejected and attention was given to the correlator. All the available 
evidence showed that this procedure was successful and that if there 
were any systematic errors in the final results due to zero-drift, they were 
negligibly small. 

The next step was to subtract from the total observed photomultiplier 
and anode currents t^T^i^T) the contribution of the night-sky, to 
find the currents due to the star alone ii(S)t i2(S). 

Now it follows from equation (5.1) that the correlation c0(d) in any 
given cycle varies with current and gain so that 

(10.1) 

(10.2) 

(10.3) 
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where Gc is the gain of the correlator and o-STI) is defined in equation 
(9.2). Hence cx(d) the correlation normalized to standard currents 
and gain is given by 

C x W ~ GcH(S)i2(S) ± G&iSWS) • 

Thus the weighted mean correlation for a single night of n cycles is 
given by 

CN{d)~ liGc&iSfrwyMTMT)] ( 1 0 - 5 ) 

n 

where Gc is the mean gain of the correlator. If we now assume that 
h{T) = i1(S) and h(T) = i2(S)y solely for the purpose of weighting the 
results, then we may write 

I'oW 2c«{d)ln 
Cx{d)~ IGch(S)h(S) ic^sy.isyn ( 1 0 , 6 ) 

which can be written 

cx(d) = c0(d)l[Gc.il(S)i2(S)]. (10.7) 

Thus the normalized weighted mean correlation for a run on a star is 
equal to the mean correlation for the run divided by the mean photo
tube currents due to the star and the mean gain of the correlator. In 
practice this fact greatly simplified the analysis of the results because 
it was not necessary to normalize and weight each 100 s period indi
vidually. 

The statistical uncertainty (±cr A), due to noise alone, in the mean 
normalized correlation for the whole run is given by 

°v=[°Da + °ca]m (10-8) 

where aD is the uncertainty in the three-day running mean of the drift 
and is given by 

oj^G^uiWIpV* (10.9) 

where p is the number of 100 s cycles used in finding the drift and ac 

is the statistical uncertainty in the correlator output given by equation 
(10.3). 

The final value of the weighted mean correlation for a given baseline 
Cy (d) was found by summing the results obtained on different nights. 
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The value for each night was weighted by the square of its uncertainty 
so that for the results taken on r nights 

C x { d ) = ' Zi/<V ± (ITT^TF2 ( 1 ( U 0 ) 

r r 

where the uncertainty is only that due to statistical fluctuations in the 
correlator output. There are, of course, other factors which contribute 
to the uncertainty of the final result and these will be considered in the 
following section. 

10.2 Estimating the Uncertainty in the Normalized Correlation 
The final uncertainty in the results was determined by two groups 

of factors—those that were invariant with baseline and those that were 
not. 

The first group comprised the statistical noise in the correlator 
output, errors in the normalizing factors (phototube anode currents 
and correlator gain), the possible effects of scintillation, and the change 
of optical bandwidth with elevation angle. The uncertainty due to 
statistical noise is calculable and has been discussed in §10.1. The 
errors in the phototube anode current product {i\{T)i2(T)) were a 
function of the linearity, calibration and zero level of the current 
integrators and introduced an uncertainty of less than 1 per cent into 
the results. The errors in the correlator gain were due to changes in 
the ambient temperature during the night; these changes altered the 
dielectric loss in the long cables from the phototubes to the correlator 
by as much as 5 per cent during the night. The gain of the system, 
including the cables, was measured before and after every run and the 
temperature was recorded; nevertheless, there was a residual un
certainty of about 1 per cent in Gv the mean gain of the correlator. 
The effects of scintillation are discussed in § 11.11 where it is shown that 
they were almost certainly negligible. The change of optical band
width with elevation angle was due to mechanical distortion of the 
reflectors which changed the shape and size of the 'image* of the star. 
There were corresponding changes in the angular dispersion of the 
light passing through the interference filters and hence small changes 
in the optical bandwidth 5 0. From equation (5.1) it can be shown that 
cN{d) is inversely proportional to the optical bandwidth and hence 
there was a small systematic variation of normalized correlation with 
elevation angle. Extensive measurements of bright stars showed that 
the normalized correlation did not vary significantly from 30° to 55° 
elevation and then decreased smoothly with a loss of about 10 per cent 
at an elevation of 75°. 

Although this first group of factors increased the uncertainty in the 
final result they did not introduce systematic errors into the ratio of the 
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normalized correlations at different baselines; hence they did not affect 
the measurements of angular diameter. This statement depends, of 
curse, on the fact that observations at each baseline were carried out 
n\ cr the same range of hour angles and hence the same elevation angles, 
an! the programme was always planned so that the dates of observations 
at different baselines were interleaved, thus minimizing any effects of 
slow changes in the equipment or the environment. 

The second group of factors—those believed to vary with baseline— 
w ere likelv to introduce systematic errors into the angular diameters and 
therefore very great care was taken to estimate their magnitude. This 
in < »up comprised the possibility of spurious correlation due to Cerenkov 
li'ht pulses from the night-sky and also to radio interference, the 
possibility of baseline-dependent coupling between the arms of the 
interferometer and the loss of correlation due to misalignment of the 
baseline. Upper limits to unwanted correlation due to Cerenkov light 
pulses, radio interference and coupling between the arms of the 
interferometer were established experimentally as described in § 11.10. 

Apparent magnitude CB) 
of s t a r 

Fig. 10.1. The uncertainty in the zero-level of the correlator due to possible sources 
of unwanted correlation (see text). The uncertainty is expressed as a percentage 
of the zero-baseline correlation from the star and is plotted against the 
apparent magnitude of the star under observation. 

The numerical results of these tests are shown in fig. 10.1 and 
represent an uncertainty in the zero level of the correlator and therefore 
an additional uncertainty in the normalized correlation. The loss of 
correlation due to misalignment of the baseline was caused by differen
tial delays in the arrival time of the light at the two phototubes. Thus, 
taking the electrical bandwidth to be rectangular with a width of 
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100 MHz there was a loss of correlation of about 1 per cent (see 
equation (4.35) and fig. 4.7) for a differential delay of 0-33 ns. At the 
longest baseline used at Narrabri—150 m—this corresponded to a 
misalignment of the baseline of about + 3 minutes of arc when observing 
a star at an elevation angle of 45°. Since in practice the azimuth was 
usually maintained with a precision of roughly ± 3 minutes of arc, any 
loss of correlation was only significant at long baselines and low angles 
of elevation. This loss was computed from the azimuth errors of the 
computer which were recorded every half hour and, if necessary, a 
correction was made to the measured correlation; the uncertainty in 
this correction was included in the uncertainty of the result. 

Although the total uncertainty in the measured values of normalized 
correlation and in the derived values of zero-baseline correlation and 
angular diameter was estimated by taking into account all the factors 
outlined above, the uncertainty in the final result, except for the two 
brightest stars (aCMa and a Car), was largely due to the statistical 
noise in the correlator output. It is interesting to note that, if a 
significant improvement were to be attempted in the signal/noise ratio 
of the instrument—for example by increasing the size of the reflectors 
—it would also be necessary to lower the limits set by some of the minor 
factors described above. 

10.3 Finding the Angular Diameter of Single Stars 
10.3.1 The angular diameter of the equivalent uniform disc 

It is convenient to express the results for single stars as the angular 
diameter 0vl) of the equivalent circular disc of uniform surface bright
ness. This result may then be interpreted later (§ 10.3.2) in terms of 
particular models of the star which take into account limb-darkening. 
The values of the mean normalized correlation cN(d) measured at 
each baseline, together with their uncertainties were calculated from 
equation (10.10). These results were then fitted to a theoretical curve 
in a computer. In the simple case, where the star is not significantly 
resolved by the individual reflectors (A^; 1), the shape of this curve is 
given by 

r%\Qyd)=[2J1(x)ixY ( i o . i l ) 

where x = 7rdt9UD/An, A0 is the effective wavelength and 6vl) is the angular 
diameter of the equivalent uniform disc. The least-squares fitting 
of the data to this curve was carried out by an iterative programme. 
Reasonable initial values were taken for cN(0) (the normalized correla
tion at zero baseline) and 0U D, and corrections dc.Y(0) and d6VD, and 
corrections dcv(0) and d0U D were computed to minimize the weighted 
squared differences between the observations and the theoretical curve. 
The r.m.s. uncertainties in cv(0) and 6VD were also computed. The 
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calculation was then repeated using corrected initial values and the 
iteration was continued unti l d 0 U D / 0 l J D and dc v (0)/c i v (0) were < 10~ 4 . 

If the angular diameter of the star is large enough to be partially 
resolved by the individual reflectors, the theoretical curve is modified 
as we have already seen i n § 5.3. The shape of the curve is then given 
by equation (5.12) and is illustrated in fig. 5.1. The broken line for 
the case A —0*90 corresponds approximately to observations of Sirius 
with the reflectors at Narrabri . For most of the stars observed at 
Narrabri the effects of partial resolution were negligibly small but, 
where necessary, the values of cx(0)y 0 U D and A were found from the 
data by a least-squares fit to equation (5.12) using an iterative procedure 
as before. The results for three stars are shown in fig. 10.2. One star, 
j8 Crucis , has a faint companion and therefore has a lower value of 
zero-baseline correlation (§10.3.3) . 

10.3.2 The effects of limb-darkening 
We saw in chapter 4 that in an intensity interferometer the correlation 

is proportional to the square of the amplitude of the Fourier transform 
of the intensity distribution across the stellar disc, in contrast to 
Michelson's interferometer in which the visibility of the fringes is 
linearly proportional. In consequence, unless the star is very bright, 
the details of the distribution are likely to be lost because they are 
carried by high-order Fourier components of low/signal noise ratio. 

T h i s point has been illustrated in a discussion of the effects of 
limb-darkening by Hanbury Brown and Twiss (1958 a). They 
calculated the variation of correlation with baseline for a star with a 
uniform disc of angular diameter 0 l T I ) , and also for a limb-darkened 
star of angular diameter 0 L D . They took a simple approximate form 
of the conventional cosine law of limb-darkening in which the intensity 
at any angle 6 from the centre of the star is given by 

h{8) = /,(0)[i - (i - P i e ^ y 2 } ] (io.i2) 

where 0 L 1 ) is the true angular diameter of the star and uh is the con
ventional limb-darkening coefficient. The i r results for a completely 
limb-darkened star (« A = 1) of diameter 6IA} are shown by the crosses 
in fig. 10.3 and the circles show the results for a uniformly bright star 
(#A = 0) of diameter 9VD. The ratio ^ U D / ^ L D W A S chosen so that the 
shapes of the two curves can be compared. It can be seen that they 
are very similar; the only significant differences appear in the secondary 
lobes and do not exceed about 0-01 of the zero-baseline correlation. 
It follows that these two extreme cases of zero and complete l imb-
darkening cannot be distinguished unless the signal/noise ratio is 
high ( ~ 100 to 1 at zero baseline). A t Narrabri this performance was 
only reached on the two brightest stars (a C M a and oc Car) and so, for 
most stars, it is reasonable to say that the interferometer measured only 
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Baseline (in m) 

Basel ine ( in m) 

Fig . 10.2. Correlation versus baseline measured for three stars of different angular 
size. T h e full lines were fitted to the points as described in the text. F r o m 
Hanbury Brown, Davis, A l l e n and Rome (1967). 
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the angular diameter of the equivalent uniform disc—the uniform disc 
being defined as the disc which radiates the same total light flux as the 
actual star and which has a Fourier transform for the equivalent line 
source which closely matches that of the actual star. 

However, it should be noted that the angular diameter of the 
equivalent uniform disc does not differ much from the true angular 

10 I i i i i i i i 
0 1 2 3 4 5 6 7 

Base l ine (tTde/A) 
F i g . 10.3. T h e effect of l imb-darkening on the variation of correlation with baseline. 

: complete l imb-darkening - 1, • ; uniform disc w ^ O . F r o m Hanbury 
Brown and Twis s (1958 a). 

I 0 9 I I J I I 
*" - 1 0 - 0 5 O + 0 5 +1-0 

Limb-darkening coef f i c ien t 

F i g . 10.4. T h e effect of l imb-darkening on the apparent angular diameter of a star. 
0LP/0UD is the ratio of the true angular size to the equivalent uniform disc, 
U\ is the l imb-darkening coefficient. F r o m Hanbury Brown and Twis s 
(1958 a). 
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diameter of a star even in the case of complete limb-darkening. Thus 
Hanbury Brown and Twiss give the ratio 0hl)/dViD (true angular 
size/uniform disc) as 

<W0un= [0 -«*/3)/(l -7«,/15)]"* (10.13) 

for the limb-darkening law of equation (10.12). This ratio is shown in 
fig. 10.4 as a function of uA. 

To summarize, the intensity interferometer yielded the angular 
diameter (0VI)) of the equivalent uniform disc of a single star. For 
most stars the true angular size of the limb-darkened disc (0lA)) cannot 
be found from the observations but must be derived by introducing a 
small theoretical correction which depends on the assumed law of 
limb-darkening. 

10.3.3 The effects of multiple stars 
The procedure for finding the angular diameter of a star as described 

above is based on the assumption that we are dealing with a single and 
not a binary or multiple star. It is of course possible to reject known 
binaries on the basis of the available optical evidence. However, 
experience shows that this is not good enough and even some of the 
well-known bright stars have proved to be multiple when observed 
with the interferometer. It is therefore important, before a theoretical 
curve is fitted to the measurements, to check whether or not they are 
consistent with a single star. 

Let us first consider the simple case when the interferometer observes 
a binary star in which the components have an angular separation 0S, 
which is too small to be resolved by the individual reflectors. If the 
line joining these two components makes an angle if* with the baseline, 
the shape of the curve relating correlation to baseline is given by 

H-2/1/2|r i(^)||r2(rf)| cos {2TT0 B</COS^/A}] (10.14) 

where 7X and I2 are the intensities of the two components, both of 
which are assumed to be too small to be resolved by the individual 
reflectors. This curve is modulated at a frequency determined by 
0scost/f and the observed correlation oscillates between values which 
are proportional to 

[hl^Wl +h\V2(d)\Y and [7,1 ̂ (^1-7,1^(^)1 f. (10.15) 

Since 08cos*/r varies with time as the position angle changes, the 
correlation observed at a given baseline also varies with time and has 
a mean value which lies between these extremes; it is therefore less 
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than the correlation expected from a single star with the same light 
flux. In the more complicated case where the star has more than two 
components the correlation will also vary with time but will be further 
reduced relative to a single star giving the same total light flux. 

In principle, it is therefore possible to distinguish a multiple from 
a single star by observing that the correlation is less than expected 
from a single star of the same brightness, or by noting that the normali
zed correlation varies with time, or with baseline, in a way which is 
inconsistent with a single star. As an example, consider the case 
where the separation of a binary star 0H is such that it is completely 
resolved at the shortest baseline used (^m i n^/2S s). Then the 
normalized correlation, averaged over a wide range of position angles, 
is given by 

r 2 ( < / ) = (IAh2) + (10.16) 

Thus, in this simple case the interferometer treats the two stars as 
separate entities and the observed correlation is the sum of the correla
tion due to each star separately. It follows that, at short baselines 
where neither of the components is individually resolved, the correla
tion will be reduced, relative to a single star, by the factor 

(/1

8 + / 2«)/(A + ̂ )a- (10.17) 
Similarly, if the star had n components and the separations between 
them were all resolved, the correlation would be reduced, relative to a 
single star, by the factor 

2/ 2/(2 7) 2- (10.18) 
n n 

In these cases we can distinguish a multiple from a single star by 
measuring t n e normalized zero-baseline correlation, and 
comparing it with the value for a single star. 

A more complicated case is where the separations 9H between the 
components of a multiple star are not resolved at the shortest baseline. 
In this case it may happen that the correlation at short baselines is not 
reduced relative to a single star, and the only way of detecting that 
such a star is not single would be to make observations at several 
baselines and to compare the curve with that expected from a single 
star. However, this method is very time-consuming and is only 
practicable for a few very bright stars ; we therefore used the following 
procedure. 

When seeking to measure single stars, selected on the best available 
optical evidence, the first measurements were always made at the 
shortest possible baseline (10 m). If the observed correlation was 
less than expected and would obviously lead to a lower value of clX(Q) 
than that given by a single star, the star was deleted from the programme 

127 



of single stars. The practical criterion adopted was that if the star 
gave less than 80 per cent of the correlation expected from a single star, 
it was rejected ; this implied that, if the star is binary, then the secondary 
component is at least 2*2 magnitudes fainter than the primary. As a 
further safeguard the optical and spectroscopic data were reviewed and, 
if there was a suspicion that the star might be multiple, observations 
were made at three or more baselines and the ratios of these correlations 
were compared with those expected from a single star. 

Experience showed that this is an effective test of whether a star is 
single or not—a single star being defined as one in which any secondary 
component is at least 2-2 magnitudes fainter. For example, it was 
immediately obvious that well-known spectroscopic binaries such as 
A Sco and oc Vir are not single ; furthermore, the interferometer showed 
beyond question that some of the well-known bright 'single' stars are 
multiple (e.g. a Sgr, S Sco). Nevertheless, unless it was convenient 
to spend a long time on each star, there was inevitably a small residual 
uncertainty as to whether a star is single or not. 

10.3.4 The effects of stellar rotation 
One of the many factors which was considered when fitting theoretical 

curves to observations of single stars is rotation. The most obvious 
effect of rotation is to change the shape of a star, increasing the equatorial 
diameter relative to the polar diameter. This means that we are no 
longer dealing with a circular disc and, if the surface brightness 
remained uniform, these changes would appear directly as apparent 
changes of the angular diameter which would, in general, vary with 
position angle. However, the situation is complicated by the fact that 
the variation of surface gravity over a rotating star leads, at least in 
theory, to significant variations of surface brightness. For example, 
the reduction of surface gravity at the Equator may be expected to 
lead to comparatively low brightness in that region. The overall 
effect of rotation on the apparent angular size will therefore depend in 
a complicated way on the orientation of the rotation axis relative to the 
baseline of the interferometer. 

The effects of rotation have been discussed briefly by Hanbury 
Brown, Davis, Allen and Rome (1967) and at greater length by 
Johnston and Wareing (1970). In the first of these papers the authors 
consider a very rapidly rotating star with an equatorial velocity of 
350 km s - 1 observed in three different orientations. The model of this 
star is based on that given by Ireland (1966); it assumes simple solid 
rotation in hydrostatic equilibrium, the radiated flux at any point on the 
surface being given by von ZeipeFs theorem as proportional to the 
local value of gravity. When the rotation axis of the star is parallel 
to the baseline, numerical integration of the brightness distribution 
shows that the equivalent strip source is both narrower and limb-
brightened as compared with a uniform disc with a radius equal to the 
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mean of the polar and equatorial radii. But the Fourier transform of 
the distribution is almost identical to that of this uniform disc, at least 
out to the first minimum in the transform, and it follows that the 
measured angular diameter is almost unchanged by rotation. This 
rather surprising result is due to the fact that changes in the Fourier 
transform due to the reduction in polar diameter are, to a first order, 
cancelled by those produced by polar brightening. When the star is 
viewed equator-on, with the rotational axis perpendicular to the base
line, the calculations show that the angular diameter is apparently 
8 per cent greater than the uniform disc; when it is viewed pole-on the 
angular diameter appears to be about 5 per cent greater than the uniform 
disc. 

Johnson and Wareing consider the two rapidly rotating stars 
Regulus (a Leo) and Altair (a Aql). Using simple models, based again 
on von Zeipel's theorem, they find that the maximum apparent change 
of angular diameter with aspect is roughly 6 per cent for Regulus and 
4 per cent for Altair. 

Both these discussions lead to the same conclusion that, for most 
stars, the effects of rotation are so small that they would have been 
difficult to detect with the Narrabri interferometer. They were not 
therefore likely to be a significant source of error in the Narrabri 
programme. However, for very rapidly rotating stars, viewed in a 
favourable aspect and over a sufficient range of position angles, it 
should be possible to detect the effects of rotation and this is confirmed 
bv the measurements on Altair reported in § 11.7. 

Although the effects of rotation are not likely to be significant in the 
work of the interferometer, where angular diameters were measured 
with a precision of about ± 5 per cent, it is clear that they would have 
to be taken into account in more precise work with a more sensitive 
instrument. Furthermore, it is interesting to note that these effects 
may be comparable with those of limb-darkening (§ 10.3.2). 

10.3.5 The effects of polarization 
It is interesting to enquire if the angular size of a single star depends 

upon whether it is observed in polarized or unpolarized light. If 
scattering by electrons plays a significant role in the star's atmosphere, 
then it is to be expected that the limb-darkening law will depend upon 
the plane of polarization. 

Chandrasekhar (1946) has analysed pure scattering by free electrons 
in a semi-infinite plane parallel atmosphere, and has shown that the 
radiation is polarized and that the percentage polarization increases 
towards the limb where it reaches 11 per cent. The ratios of the light 
flux at the centre of the star to that at the limb are 0*36 and 0-29 for 
the two planes of polarization. If therefore we measure the star in 
light polarized parallel E\ \ and perpendicular El to the baseline of the 
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interferometer, we shall find the angular size to be larger for El than 
for 

A later paper by Harrington (1970) discusses the same problem in 
greater detail and gives the variation of polarization over the stellar 
disc as a function of the wavelength and the ratio of scattering to 
absorption. His results indicate that, for a wavelength of 443*0 nm, 
for the range of spectral types (O to F8) observed at Narrabri and for a 
finite amount of absorption, we may take the polarization given by 
Chandrasekhar as an upper limit. 

B a s e l i n e (a rb i t ra ry un i t s ) 

F i g . 10.5. T h e effect of electron-scattering i n the corona of a star on observations 
made in polarized light. EX, E\\ correspond to polarization perpendicular 
and parallel to the baseline of the interferometer. T h e broken line shows 
the shape of the curve for unpolarized light. 

A rough estimate of the effect of this polarization can be made by 
treating it as a change in the limb-darkening coefficient uA. Thus, if we 
represent the difference between the distributions for the two planes 
of polarization as a change in wA of (0-39-0*26) = 0-07, then fig. 10.4 
shows that the corresponding change in the apparent angular diameter 
of the star would be less than 1 per cent. Since this estimate is an 
upper limit we may conclude that any effects of this polarization are 
unlikely to have been significant in the measurements of single stars 
made at Narrabri. 
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Another possibility which we have considered is that electron 
scattering in an ionized corona, possibly associated with mass loss from 
a hot star, might produce observable effects. A thorough theoretical 
analysis of this question has not yet been made. We have considered 
only one elementary model in which the corona of a star is formed by 
fully ionized hydrogen streaming radially away at a constant velocity. 
Light emitted from the star is scattered by electrons in this corona and 
is polarized: it is assumed that the optical depth is so small that photons 
leaving the star never suffer more than one collision on their path 
through the corona. Fig. 10.5 shows curves of correlation versus 
baseline calculated for this model for two planes of polarization; as one 
would expect the angular diameter is greater with the polarization 
normal to the baseline; the curves were calculated for x = 0-2 where x is 
a scattering parameter given by 

* = W H V i ? ~ vk ( 1 ( U 9 ) 

where S is the rate of mass loss inunitsof 10~ 6Moyr _ 1(Mo = mass of 
sun), <70 is the Thomson scattering cross-section of the electron, V is 
the velocity of mass efflux in units of 103kms -1 and R is the radius of 
the star expressed in solar radii. 

From observations of three hot super-giants (SOri, eOri, £Ori), 
Morton (1967) suggests that they lose mass at about 10_<i Moyr"1 with 
an efflux velocity of about 1400 km s"1. Substituting these figures in 
equation (10.19) and putting R = 50 solar radii, the scattering parameter 
x = 0-004 and it can be shown that the corresponding change in apparent 
angular size with polarization is about 0T per cent. It therefore seems 
unlikely that effects of mass loss from hot stars will be observable. 

Although this discussion suggests that any change in the apparent 
angular diameter of a star with plane of polarization is likely to be less 
than 1 per cent, we decided to observe the bright super-giant Rigel in 
polarized light. The results are presented in §11.8. 
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C H A P T E R 11 
results 

11.1 Angular Diameters and Zero-baseline Correlations 
The main programme of the interferometer at Narrabri was the 

measurement of 32 stars. A list of these stars is shown in Table 11.1. 
They were chosen to be as widely representative of different types of 
star as possible and their distribution in spectral type and luminosity 
class is shown in Fig. 12.1. The stars are all brighter than about 
B = + 2-5 and are limited to declinations south of about 20° N in order 
to avoid excessive atmospheric extinction at low elevations, the only 
exception being the bright star Vega (a Lyr) at 39° N. Their spectral 
range was limited at one end to stars hotter than type F8 by considera
tions of the signal/noise ratio, which is a function of surface temperature 
as discussed in § 5.6. 

The final results are given in Table 11.1. Columns 1-3 identify 
the star together with its spectral type and luminosity class. Columns 
4 and 5 give the results of fitting theoretical curves to the normalized 
correlations observed at different baselines following the procedure 
described in § 10.3. Column 4 shows the normalized zero-baseline 
correlation Cx corrected for the effects of partial resolution (AA = 1) 
and expressed as the ratio of the measured correlation to that expected 
(see §11.3) from a single star; o is the associated r.m.s. uncertainty 
estimated by the method discussed in §10.2. Column 5 shows the 
apparent angular diameter 8VD of the equivalent uniform disc as 
discussed in § 10.3.1 with its r.m.s. uncertainty a. 

One of the problems in selecting these stars was to avoid unsuspected 
double stars which might give misleading results. From the existing 
optical data one cannot be sure whether or not any particular star is 
single and before including it in the programme it was necessary to 
measure the zero-baseline correlation; in this way it is possible (see 
§ 10.3.3) to assign an upper limit to the brightness of any companion 
star. For the majority of the stars in Table 11.1 the zero-baseline 
correlation does not differ significantly from unity and, taking the r.m.s. 
uncertainties in C v to be about ±0*1, one can say that any companion 
stars are likely to be at least 2-5 magnitudes fainter than their primaries. 
It follows that these companions, if they exist, do not contribute more 
than 1 per cent of the observed short-baseline correlations and it is 
therefore unlikely that they cause any significant errors in the measured 
angular diameters of the primary stars. 
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However, there are five stars in the list (aVir, y2VeI, £Ori, j3Cru, 
8 Sco) which are definitely multiple. Two of these stars (aVir, 
y2 Vel) are well-known binaries. For both these stars the variation of 
correlation with time, position angle and baseline was compared in a 
computer with a theoretical model of a binary star (§ 11.4, § 11.5) and 
the value of the angular size of the primary star was found. The resul
ting values of 0 u r ) are shown in Table 11.1 but, since the separation 
between the components was not fully resolved at short baselines, no 
values of cx are quoted. Three of the stars in Table 11.1 (£Ori, 
jSCru, 8 Sco) have values of cN which are significantly less than unity 
and this implies that they are multiple. However, in each case it can 
be shown that any error in the angular size of the primary due to a 
companion star is likely to be considerably less than the uncertainty 
in the measurement shown in the table. We may therefore conclude 
that the angular diameters in Table 11.1 all refer to single stars; in 
some cases, notably the five multiple stars mentioned above, the angular 
size refers to the brightest star in the system. 

11.2 Radiif Fluxes and Temperatures 
11.2.1 True angular diameters 

The observational data presented in column 5 of Table 11.1 give 
the angular diameter of each star in terms of 9V1) the angular diameter 
of the equivalent uniform disc. The true angular diameter is 
greater than this value due to the effects of limb-darkening as outlined 
in § 10.3.2. For the conventional cosine law of limb-darkening (equa
tion (10.12) the ratio ^ D / ^ U D

 l s g i v e n by equation (10.13) which can be 
used to evaluate 6]J} for all the stars. However, the values of #LD 

shown in column 6 were derived by a more precise method in which the 
limb-darkening was taken from model atmospheres of the appropriate 
temperature and gravity following Hanbury Brown, Davis and Allen 
(1974). 

11.2.2 Radii 
We have used these values of 6hl) to find a basic parameter, the 

physical radius R, of 15 of the stars in Table 11.1. for which the distance 
is reasonably well known. The resulting values of R are shown in 
Table 11.2 ; they are expressed in units of (Re) the solar radius (Allen. 
1963). 

For 12 of these stars the radius was found from dhD and the trigono
metrical parallax (Jenkins, 1963); 11 of the stars were chosen because 
the probable error in their parallaxes is quoted as less than ± 25 per 
cent; 1 star (ocCar) was included, although the quoted uncertainty in 
its parallax is ± 35 per cent, because of the paucity of information 
about supergiants. For 3 stars (oc Vir, y2 Vel, £ Pup) the parallax was 
derived from other sources; a Vir is discussed in §11.4 and y2Vel in 
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1 2 3 4 

Zero-baseline 
Star number Star name Type correlation 

472 a Eri B 3 (Vp) 0-98 ±0-05 
1713 pOri B 8 (la) 0-98 ±0-08 
1790 y Ori B 2 (III) 1-03 ±0-07 
1903 eOri B O (la) 0-86 ±0-07 
1948 £Ori O 9*5 (lb) 0-60 ±0-06 
2004 K Ori B 0-5 (la) M8±0-09 
2294 jSCMa B 1 (II-III) 1-07+0-08 
2326 a Car F 0 (Ib-II) 0-75 ±0-22 
2421 y Gem A 0 (IV) M7±0-09 
2491 a CMa A1(V) 0-91 ±0-06 
2618 eCMa B 2 (II) 0-89+0-06 
2693 8 CMa F 8 (la) 0-93 ±0-18 
2827 7) CMa B 5 (la) 0-99 + 0-09 
2943 cxCMi F 5 (IV-V) 0-98 + 0-10 
3165 £Pup 0 5(f) 1*04 ±0-08 
3207 y2 Vel WC8 + 0 9 (I) — 
3685 jSCar A 1 (IV) 1-01 ±0-06 
3982 a Leo B7 (V) 1-12± 007 
4534 £Leo A3(V) 1-17+0-10 

5 6 7 

Angular diameter 
X 10~3 sec of arc Temperature 

# U D ± o* 0 L D ± O - [Tc(F)±a]IK 

1-85 + 0-07 1-92 ±007 13 700+600 
2-43 ±0-05 2-55 ±0-05 11 500 ±700 
0-70 ± 0 0 4 0-72 ±0-04 20 800 ±1300 
0-67 ±0-04 0*69±0-04 24 500+2000 
0-47 + 0-04 0-48 ±0*04 26 100 ±2200 
0-44±0-03 0-45 ±0-03 30 400 ±2000 
0-50 ±0-03 0*52±0-03 25 300 ±1500 
6-1 ±0-7 6-6±0-8 7500 ±250 

l-32±0-09 l-39±0-09 9600 ±500 
5-60±0-15 5-89±0-16 10 250 ±150 
0-77 ±0-05 0*80 ±0-05 20 800 ±1300 
3-29+0-46 3-60±0-50 — — 
0*72+0-06 0-75 ±0-06 14 200±1300 
5-10±0-16 5-50±0-17 6500 ±200 
0*41 ± 0-03 0-42 ±0-03 30 700 ±2500 
0*43 + 0-05 0-44±0-05 29 000 ±3000 
1-51 ±0-07 l-59±0-07 9500 ±350 
l-32±0-06 1*37+0-06 12 700 ±800 
1-25 + 0-09 l-33±0-10 9050 ±450 



4662 y Crv B 8 (III) 0-97+0-10 0-72 + 006 0-75 ± 0 - 0 6 13 100+ 1200 
4853 £ C r u B0-5 (III) 0-88 ±0*03 0-702± 0-022 0-722± 0-023 27 900 ± 1200 
5056 oc Vir B 1 (IV) — 0-85 ± 0 - 0 4 0*87+0-04 22 400 ± 1000 
5132 € Cen B 1 (III) 1-02+0-07 0-47 ± 0 - 0 3 0-48 ± 0 - 0 3 26 000 ± 1 8 0 0 
5953 S Sco B 0-5 (IV) 0-75 + 0*07 0-45 ± 0 - 0 4 0-46 ± 0 - 0 4 — — 
6175 £ O p h 0 9-5 (V) 1-01 + 0*12 0*50 ±0*05 0-51 ± 0 - 0 5 — — 
6556 a Oph A 5 (III) 0-94+0-09 1*53±0-12 l - 6 3 ± 0 - 1 3 8 1 5 0 ± 4 0 0 
6879 e Sgr A O (V) 1-02 + 0-06 l*37±0-06 1-44 ±0*06 9650 ± 4 0 0 
7001 a Lyr A O (V) 0-99 + 0-04 3-08 ±0*07 3-24±0-07 9 2 5 0 ± 3 5 0 
7557 a Aql A 7 (IV, V) 0-94+0-06 2-78±0-13 2-98+0-14 8250+250 
7790 a Pav B 2-5 (V) 1-01 + 0-07 0-77 ±0-05 0-80 ± 0 - 0 5 17 1 0 0 ± 1 4 0 0 
8425 a Gru B 7 (IV) 1-11 ± 0 - 0 8 0-98 ±0 -07 1-02+0-07 14 800± 1200 
-8728 aPsA A 3 ( V ) 1-02 ± 0 - 0 8 l -98±0-13 2 -10±0-14 9200 ± 5 0 0 

1. Briglht star catalogue number (Hoffleit, 1964). 
2. Star naime. 
3. Spectral!.type and luminosity class (in brackets). 
4. Zero-baseliine correlation normalized by the value expected from a single unresolved stand corrected for partial 

resolution (Z&A-l) (§ 10.3.1). 
5. Angular diamceter of equivalent uniform disc with r.m.s. uncertainty (§ 10.3.1). 
6. True angular diliameter allowing for the effects of limb-darkening (§10.3.2 and § 11.2.1). 
7. Theoretical effective temperature of star computed by Webb (1971). 

TabhH l.V 1 xT^aiigmuhaidinctets^xT^ s£ 3<2rs. 



Star Spectral Luminosity Radius (RQ^1) 
type class R± ati 

y2 Vel WC7+0 7 —• 16-3+ 2-9 
£Pup 0 5f — 15-6+2-2 
a Vir B 1 V 7-9+0-7 
a Gru B 5 V 2-2+0-6 
a Leo B7 V 3-8+ 1-0 
a Lyr AO V 2-8 + 0-2 
y Gem AO IV 4-2+0-7 
aCMa A l V 1-69+0-05 
jSCar A 1 IV 4-5+1-8 
£Leo A3 V 1-9+0-2 
aPsA A3 V 1-6+0-2 
a Oph A5 III 3-1 + 0-5 
a Aql A7 IV, V 1-65 + 0-09 
a Car FO Ib-II 42+22 
aCMi F5 IV-V 2-1 + 0-1 

N O T E 

Luminosity class 
I a, b super-giants 

11 -bright giants 
III- giants 
IV- sub-giants 
V--main sequence, dwarfs 

Table 11.2. The radii of 15 stars. 

§11.5; the parallax of £Pup has been taken as equal to that of y2Vel 
following Davis, Morton, Allen and Hanbury Brown (1970). 

11.2.3 Emergent fluxes 
Another important parameter of a star is the absolute monochromatic 

flux {Fx) emitted by the stellar surface or, in other words, the emergent 
flux. For the stars in Table 11.1 this was found from the relation 

F ^ m ^ ( H - i ) 

where fx is the measured absolute monochromatic flux received from the 
star at a wavelength A. 

These values of FA are fundamental to the comparison of actual 
stars with the theory of stellar atmospheres. It is worth noting that, 
apart from a minor correction for limb-darkening, they are independent 
of theoretical models and based simply on observational data. They 
were used in the next section to find effective temperatures. 
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11.2.4 Effective temperatures 
The effective temperature of a star is defined in terms of the emergent 

flux FA by the relation 

jFAdA = a7V (11.2) 
I) 

where a is Stefan's constant. If therefore we know as a function 
of A over the complete spectrum of the star we can find a value of Te 

which is based entirely on observational data; we shall call this the 
empirical effective temperature Te(emp). This can, of course, only be 
done for stars which are sufficiently cool so that their spectral distri
bution can be measured at the surface of the Earth without significant 
errors due to loss of ultra-violet radiation in the upper atmosphere. It 
is also possible for the comparatively few hot stars for which measure
ments of ultra-violet flux have been made from rockets or satellites. 

At the present date there are sufficient data to establish empirical 
effective temperatures for only five stars measured by the interferometer. 
The results are shown in column 4 of Table 11.3. These temperatures 
are of particular value because they are based entirely on observational 
data and not on theoretical models; it is to be expected that, as more 
rocket and satellite measurements become available, it will be possible 
to extend the list. 

For the majority of stars in Table 11.1 the complete spectral distri
bution is not yet available and the effective temperatures have been 
found by matching the values of FA (§ 11.2.3) to a grid of theoretical 
models calculated for a range of effective temperatures; wc shall call 
these theoretical effective temperatures T e (F). These temperatures 

1 
Star 

2 
Spectral 

type 

3 
Luminosity 

4 
Empirical 

[re(emp)±o-f.m.9.]/K 

5 
Theoretical 

[Te(F)±aTM^]/K 

aCMi F5 IV-V 6475+240 6500+200 
oc Car FO I b-II 7425+250 7500+250 
a Aql A7 IV-V 8120+250 8250+250 
aCMa A 1 V 9680+230 10250+ 150 
jSOri B8 la 11250+460 11500+700 

1. Star name 
2. Spectral type 
3. Luminosity class 
4. Effective empirical temperature 7,(emp)/K (§ 11.2.4) 
5. Theoretical effective temperature T(F)jK (§ 11.2.4) 

Table 11.3. Comparison of empirical and theoretical effective temperatures. 
From Webb (1971). 
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have been derived for all the stars in Table 11.1. Since each theoretical 
model is characterized by two parameters, temperature and gravity, a 
single value of FA is not sufficient by itself to select a model. Three 
additional observed parameters were used as auxiliary information, C, 
the mean slope of the Paschen continuum around 550 nm, Z), the size 
of the Balmer jump and Wy the equivalent width of Hy. Taking the 
four parameters in turn (F, C, D, W)> the locus of temperature and 
gravity was plotted for all models showing the observed value of that 
parameter. Examples are shown in fig. 11.1 where the loci are plotted 
in terms of logg and the reciprocal effective temperature 80. Wherever 
possible these plots were used to choose a surface gravity for each star 
which gave the best agreement between the most sensitive parameters. 
The final theoretical effective temperature was then read directly from 
the F locus using the chosen gravity. It can be seen from the curves 
that F is the most gravity-independent and temperature-sensitive 
of the parameters. In a few cases the gravity could not be found 
in this way and was estimated from the M.K. luminosity class. The 
final values of theoretical effective temperature (Te(F)) are shown in 
column 7 of Table 11.1. 

4 3 2 H 
Surface gravi ty log g 

F i g . 11.1. Effective temperature versus surface gravity for model atmospheres which 
give the observed values of F (emergent flux), C (slope of Paschen cont inuum), 
D (Balmer j ump) , and I F (equivalent w id th of \ \ y ) for two stars. T h e tempera
ture scale is i n conventional units of reciprocal temperature (5040/7'c K _ 1 ) . 
F r o m R . J . W e b b (1971). 

It is interesting to enquire how well these theoretical temperatures, 
which rely heavily on models, agree with the entirely empirical 
temperatures shown in Table 11.3. For convenience the theoretical 
temperature for each star has been shown in column 5 of Table 11.3 
and it can be seen that the agreement is good. It is also interesting to 
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enquire how closely the scale of temperatures derived from the inter
ferometer agrees with other scales. The temperatures Te(F) in 
Table 11.1 given by the interferometer are shown in fig. 11.2, together 
\\ ith the well-known scale of Harris (1963). It can be seen that there 
is general agreement but there are some differences. A discussion of 
the significance of these differences and of the relation of the temperature 
scale to the theoretical models is beyond the scope of this book. 

30000 

i 20000 

a 
E 

> 10000' 
u 

UJ 

Temperature scale of Harris (1963) 

SUN 

—r-
05 B O 

1 
A O 

Spectral type 
F O G O 

Fig. 11.2. C o m p a r i s o n o f scale of effective temperature. T h e points show the 
results obtained w i t h the interferometer at N a r r a b r i w i t h their r .m.s . uncer ta in
ties (from W e b b , 1971); the broken line shows the scale proposed by H a r r i s 
(1963). 

11.3 The Detection of Multiple Stars 
In § 10.3.3 we reviewed the effects of multiple stars on the observed 

correlation. We showed that it is possible to distinguish a multiple 
from a single star by observing that the correlation is less than for a 
single star of the same brightness or that it varies with time or baseline 
in a way which is inconsistent with a single star. 

The main problem in putting this scheme into practice was to 
establish the correlation expected from a single star. One major 
source of uncertainty were the modifications to the equipment which 
we introduced over a period of years (mainly new phototubes). These 
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modifications inevitably changed the zero-baseline correlation from a 
single star and so after each modification we had to recalibrate the 
equipment by observing a standard star; as transfer standards we used 
a Eri and /3 Cru. A second and more problematic source of uncertainty 
was that we could not be sure that any particular star was single; for 
example, one of our transfer standards jSCru eventually proved to be 
multiple. 

We finally established the zero-base line correlation for a single star 
by analysing the distribution of the measured values of cx for all stars 
believed to be single. This distribution showed that three of the stars 
in the list (£Ori, /SCru, S Sco) have significantly low values of cx 

and are therefore multiple. When these stars were removed the 
remaining values of cN proved to be distributed about their mean 
with a dispersion in satisfactory agreement with the uncertainties in 
their individual values. This mean was therefore taken to be the 
zero-baseline correlation expected from a single unresolved star and 
was used in finding the values of C v shown in Tables 11.1 and 
11.4. The uncertainty in this mean is about ±1-5 per cent. 

B.S. Name CN±<T* Remarks 

1948/9 £Ori 0-60+0-06 
3207 y

2 Vel — See § 11.5 
3485 S Vel 0*65 + 0-06 
4853 £Cru 0-88+0-03 
5056 a Vir — See §11.4 
5267 jSCen 0-47+0-02 

See §11.4 

5953 8 Sco 0-75 + 0-07 
6527 A Sco 0-48 + 0-08 
7121 a Sgr 0-54+0-07 

* Zero-baseline correlation with effects of partial resolution removed 
(AA=1) normalized by value expected from a single unresolved star. 

Table 11.4. Multiple stars observed with the interferometer. 

Table 11.4 is a list of nine multiple stars which were observed. 
Five of them (£ Ori, y2Vel, /2Cru, aVir, 8 Sco) are in Table 11.1. 
£Ori is listed (Hoffleit, 1964) as a triple system with a difference of 
about 2 magnitudes between the brightest components. The observed 
value of C v (0-60 + 0-06) shows that the brightest component must 
itself be a double star and the simplest interpretation is that it is a 
binary star with Am ~2 mag. It has previously been suspected by 
some observers that /3 Cru may be a double star; the value of C v 

(0*88 + 0-03) shows definitely that it is multiple and is consistent with a 
binary star with Aw ~ 2*9 mag. S Sco has not been listed previously 
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as a multiple star but the observed value of C v (0-75 + 0-07) is consistent 
with a binary star with Am~l*9mag. The two well-known binary 
stars (aVir, y 2Vel) were observed for special reasons and the work is 
described in § 11.4 and § 11.5. 

Four of the stars in Table 11.4 (5 Vel, /3Cen, A Sco, a Sgr) do not 
appear among the 32 stars in Table 11.1. It is interesting to note 
that all these well-known stars were possible candidates for our 
observing list but were rejected because the interferometer showed them 
to have companions too bright for our programme on single stars. 
8 Vel is listed (Hoffleit, 1964) as having a faint double companion, 
however, the observed value of Cx (0*65 ± 0*06) shows that the bright 
component must itself be multiple; the simplest interpretation is that 
it is a binary with Aws^l-3 mag. /?Cen is well-known to exhibit a 
variable radial velocity and it is interesting to note that the value of 
C v (0*47 ± 0*02) is consistent with a binary star with two equally bright 
components. A Sco was reported many years ago to be a spectroscopic 
binary but the brightness of the companion was not known; our 
measurement of C v (0-48 + 0-08) confirms that it is multiple and 
suggests a binary star with components of equal brightness, a Sgr 
is a well-known bright star which was tho lght to be single, but the 
observed value of C v (0-54 + 0-07) is consistent with a binary star with 
components of roughly equal brightness (Aws~0*6 mag). 

It is interesting to note how many of the well-known bright stars in 
our original observing list were found to be multiple. The result 
suggests that more extensive observations of the zero-baseline correla
tion for stars would contribute significantly to the population statistics 
of multiple stars. In principle it would have been possible to observe 
all these multiple stars in greater detail and find out more about them, 
for example, whether they are double or triple, but without a more 
sensitive interferometer such a programme would have taken far too 
long. 

11.4 The Spectroscopic Binary: Spica (a Vir) 
11.4.1 Introduction 

In principle, observations of a binary star by an interferometer, if 
made at suitable baselines and times, can yield the angular diameter 
and brightness ratio of the components and their angular separation 
as a function of time. From this information alone it is possible, again 
in principle, to find the angular size of the semi-major axis of the relative 
orbit, the eccentricity, the time of periastron passage, the longitude 
of the line of apsides, the inclination of the orbit, the position angle of 
the line of nodes, the period of the orbit and the sense of orbital motion, 
li these data are then combined with conventional photometric and 
spectroscopic observations it is possible, still in principle, to find the 
dh lance, absolute magnitude, mass, radius, surface gravity and tem
perature of both stars. 



It is therefore clear that observations of binary stars with an 
interferometer are, potentially, of considerable importance to astro
nomy. Any technique which promises to establish reasonably precise 
distances beyond the limits of trigonometrical parallax and to extend 
our meagre knowledge of the masses, radii and absolute magnitudes 
of stars, ought to be explored. Unfortunately the interferometer at 
Narrabri was not sufficiently sensitive to measure a reasonable number 
of binary stars; however, the well-known non-eclipsing double-lined 
spectroscopic binary star Spica (aVir) is sufficiently bright and 
provided an opportunity to test the technique. 

Two series of observations, made in 1966 and 1970, have been 
described by Herbison-Evans, Hanbury Brown, Davis and Allen 
(1971). A summary of their work follows. 

11.4.2 Method of observation 
The observations were carried out using the standard observing 

procedure already described in §9.5. Briefly, the two reflectors were 
guided to follow aVir and their separation—the baseline—was 
maintained constant and perpendicular to the direction of the star. 
The correlation was measured as usual, over intervals of 100 s, together 
with the light fluxes received by the two reflectors. The observed 
correlation was normalized in the usual way (§10.1) to find the 
normalized correlation cN(d) for each of these 100 s intervals. Typically 
the observations at any one baseline lasted for several hours. 

11.4.3 Analysis of observations 
A computer programme was written to calculate the theoretical 

correlation as a function of time expected from a binary star with a 
given set of assumed parameters. These calculated correlations were 
then compared with the observations by the computer and the assumed 
parameters were varied in an iterative process to obtain the best possible 
fit. 

The programme assumed that the component stars present uniformly 
bright circular discs. Under these conditions, following equation 
(10.12), the normalized correlation is given by 

hM) = ITTpy* L i 8 2 l 7 W + l Y ( r f ) 

+ 2j8|r1(d)||r2(rf)| cos (2*0 tdcos </r/A0)] (11.3) 
where 

rx(rf) = 2J1(rreumdlX0)l(nevmdlX0) (11.4) 
and 

F2(d) = 2J1(7rdXJD2dlX0)l (TT0vl)2dl\o) 
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j8 is the brightness ratio of the components and A0 is the wavelength; 
0i:m , 0um are the angular diameters (equivalent uniform discs) of the 
primary and secondary; 0S is the angular separation of the components 
projected onto the plane of the sky; if/ is the angle in the plane of the 
sky between the projection of the line joining the stars and the baseline 
of the interferometer; C is an instrumental constant corresponding to 
the normalized correlation to be expected from an unresolved single 
star. The parameters of the orbit which enter the calculation are 0a 

the angular semi-major axis; i the inclination of the orbital plane; 
Q the position angle of the line of nodes; e the eccentricity; T the 
epoch of periastron passage; a> the longitude of the line of apsides; 
P the period of the orbit measured from periastron to periastron ; U the 
period of rotation of the line of apsides. The senses of rotation of the 
stars in their orbit and of the line of apsides also enter the calculation. 

As a first step in the analysis T, e, P, o>, U and 0 U I ) 2 were fixed. The 
values of T, ey P, and co were taken from spectroscopic observations and 
are shown in Table 11.6; although they can also be found from the 
interferometer in the present case, the spectroscopic values are more 
precise. The value of 0TJD2>

 t n e angular size of the fainter component, 
was estimated because the signal/noise ratio of the interferometer was 
not high enough to yield it with acceptable accuracy from the observa
tions. To simplify the calculations, with no significant loss of preci
sion, it was assumed that the line of apsides did not rotate over the 
comparatively short period of each set of observations (C/=co) and 
the value of to, the position angle of this line, was given fixed values 
appropriate to the mean epochs of the observations in 1966 and 1970. 

The remaining six unknown 'free* parameters (/, 0a, /?, il} 0U T ) 1, and 
C) were then found by the computer as follows. The difference 
between the observed and computed correlations was found for each 
interval, squared and weighted by the square of its signal/noise ratio. 
It can be shown from equation (10.4) that this signal/noise ratio is 
proportional to (/i^2)1/2> where Ily I2 are the light fluxes received by the 
two reflectors in that interval. The final r.m.s. residual 

°r=[2(cAd) (observed)-^(^(computedJ^^yM] 1 ' 2 (11.6) 
M 

was then found for all M intervals and was minimized by optimizing 
the six free input parameters of the model in an iterative programme 
based on the Simplex method (Nelder and Mead, 1965). 

The uncertainty in each of these optimum free parameters was 
found by computing the partial derivatives of the theoretical correlation 
with respect to each parameter at the time of each observation. These 
derivatives were then weighted in proportion to the signal/noise 
ratio, and the resulting matrix of weighted derivatives was multiplied 
by its transpose and inverted. The square root of the />th diagonal 
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element of this inverse (xpp) was then multiplied by the r.m.s. residual 
or to find the r.m.s. uncertainty op in the pth free parameter, where 

ap = ar(xPpyi\ (11.7) 

Finally, to find the correct sense of rotation of the binary system, 
the whole analysis was carried out twice, for clockwise and anti
clockwise orbital motion. Although the two cases cannot be distin
guished spectroscopically; they can be distinguished by the interfero
meter given sufficient observations of adequate signal/noise ratio, 
because the orbital motion adds to or subtracts from the parallactic 
angle. As a result, the correct sense of orbital motion gives a lower 
residual and, in the present case, it proved possible to distinguish it in 
this way. 

11.4.4 Results 
oc Vir was observed on 12 nights in May 1966 with baselines of 10-0, 

22*7, 59-7 and 88-3 m for a total time of about 84 hours. The effective 
wavelength used was A0 —443-0 nm with a bandwidth of ± 5 nm. 
These results were analysed and yielded all the parameters of the orbit 
except the sense of orbital motion. The signal/noise ratio was not 
good enough to distinguish the correct sense from a simple comparison 
of the residuals ar; nevertheless, the difference between the inclinations 
(i) for the two solutions showed beyond question that the motion must 
be clockwise, because the 'anti-clockwise solution' yielded an inclina
tion of 76° which implies eclipses which are not in fact observed. 

Subsequently the signal/noise ratio of the interferometer was sig
nificantly improved, largely by the use of a new type of phototube, 
and it was decided to repeat the observations using a better choice of 
baselines. The second series were made on 16 nights in March and 
April 1970 with baselines of 19-7, 39-1 and 83-9 m for a total time of 
115 hours. Again the effective wavelength was A0 = 443 nm with a 
bandwidth of ± 5 nm. 

Analysis of this second set of observations yielded the unambiguous 
result that the sense of orbital motion is clockwise; the residual or for 
clockwise rotation was significantly less than for anti-clockwise. The 
other parameters of the orbit were in satisfactory agreement with those 
found in 1966; as expected, the 1970 results were nearly twice as 
accurate as those for 1966. 

The results of the observations in 1970 are shown in Table 11.5. 
Fig. 11.3 illustrates the variation of correlation with time observed 
with a baseline of 39-1 m. For the purpose of this figure we have 
made use of the fact that the orbital period of ctVir (4-014 days) is so 
close to 4 days that, over an observing period of 20 days, the binary 
system presents essentially the same phase every fourth night. Thus 
we have shown the observed correlation, as a function of hour angle, for 
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Parameter Value + r.m.s. uncertainty Sourcef 

Inclination of orbit (i) 
Angular size of primary (0I;DI) 
Angular size of secondary (0c 1*2) 

Angular size of primary 
(limb-darkened) (0LDI) 

Angular size of semi-major axis (0a) 
Brightness ratio of components (j8) 
Position angle of line of nodes (Q) 
Sense of orbital motion 
Epoch of periastron passage (T) 
Eccentricity of orbit (e) 
Longitude of line of apsides (w) 
Inverse period (1/P) 
Period of rotation of line of apsides (U) 

65°-9+l°-8 
(0"-87+0"-04)xl0-3 

(OM)xlO- 3 

(0"-90±0"-04)x l0 - 3 

(l"-54±0"-05)x lO" 3 

6-4± 1-0 
131°*6±2°-1 

Clockwise 
JD 2440678-09 

0-146 
138° at JD 2440678 

0-249091 days 1 

124 yr 
Semi-major axis (a) 
Distance 
Mass of primary (/wx) 
Mass of secondary (m2) 
Radius of primary (Rj 
Surface gravity of primary (log gx) 
Absolute surface flux of primary 

( & p l at 1-83 z*"1) 
Effective temperature of primary (Tel(F)) 22400+ 1000 K 
Luminosity of primary (log LXJLQ) 417 ± 0-10 
Absolute magnitude of primary (MVA) —3-5 + 0-1 
Absolute magnitude of secondary (MV2) — 1 -5 + 0-2 

I 
I 
Assumed 

( l - 9 3 ± 0 - 0 6 ) x l 0 7 km 
84+4pc 

10-9+0-9 m 
6-8 + 0-7 m } 

8-1 ±0-5 R 
3-7+ 0-1 [gx in c.g.s. units] 

(2-75 + 0-24) 

I I S 
I S 
I S 
1 S 
1 1 S 
I I S 

10 3 erg cm 2 s~x H z - 1 H P 
I : P 
I S P 
I S P 
I S P 

t I = interferometric, S—spectroscopic, P=^ photometric. 

Table 11.5. The parameters of Spica (a Vir). From Herbison-Evans, 
Hanbury Brown, Davis and Allen (1971). 

12 nights divided into four sets of three nights each, each set corres
ponding to a particular phase of the binary system. The points show 
the average correlation observed for three nights with their associated 
r.m.s. uncertainties, and the full line shows the variation calculated 
for a binary star with the parameters given in Table 11.5. 

There are a number of minor sources of error in this analysis which 
are discussed by Herbison-Evans et al. These include the effects of 
limb-darkening, distortion by rotation and tidal interaction, periodic 
changes in the primary star which is a j3 Cepheid variable, the reflection 
effect and so on. It is argued that, in the present context, none of these 
effects introduces significant error. 

In considering the results of such a complex analysis, most of which 
takes place in a computer, one cannot help wondering if they are correct, 
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and to satisfy these doubts, Herbison-Evans et al. made a critical test. 
All the parameters of the orbit, except the period of rotation of the line 
of apsides which was taken as U= oo, were left free and the computer 
was made to optimize all the 11 remaining parameters (0a, Qvm> 0vm, 
i, /3, Q, Ty e, o>, C, and P) from the interferometer data alone; no 
spectroscopic data were used. The solution gave all the parameters, 
except #Ui)2» a n ^ again showed that the sense of orbital motion is clock
wise ; to determine 6VD2 would have required data from much longer 
baselines. The results for T, ey OJ and P, based entirely on data from 
the interferometer, proved to be in satisfactory agreement with the 
spectroscopic values and gave striking confirmation that the whole 
analysis was correct. 

O 

(b) 

Cd) 

02 04 20 
Hour angle 

22 0 0 04 

Fig . 11.3. The variation of correlation with hour angle for Spica (a Vi r ) for a baseline 
of 39-1 m . The observations were made on 12 nights in 1970 and have been 
grouped (as described in the text) to show four different phases. The points 
show the observations with their r.m.s. uncertainties; the full lines show the 
correlation calculated for a binary star with the parameters given in Table 11.7. 
F rom Herbison-Evans, Hanbury Brown, Davis and Al len (1971). 

11.4.5 Discussion of the results on Spica (a. Vir) 
The interferometric results in Table 11.5 were combined with 

spectroscopic and photometric data to find some of the principal 
parameters of a Vir. The results are also shown in Table 11.5. As a 
first step the length of the semi-major axis (a) of the binary orbit was 
found by combining the spectroscopic data, which gave the projected 
axis (asini), with the inclination (i) measured by the interferometer. 
The distance of the star was then found from the semi-major axis (a) 
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and the apparent angular size (0a) of the axis measured by the interfero
meter. The resulting distance is 84 ± 4 pc and the major contribution 
to the uncertainty in this result is, surprisingly, in the spectroscopic 
data. 

The masses of the two stars were found by combining m1sin3/ and 
m2sin3/ found from the spectroscopic data with the inclination (2) 
given by the interferometer. 

The angular size of the primary 9hm was found by correcting 6vm 

for limb-darkening, as described in §10.3.2, taking a limb-darkening 
coefficient of 0*39. The radius of the primary Rx was then found from 
6lln and the distance; the surface gravity was found from the mass 
(w/J and radius (7?x) of the primary. The effective temperature Te 

and absolute surface flux of the primary Fx were found by the procedure 
described in § 11.2.3 for single stars, and the luminosity Lx was found 
from the radius and the effective temperature. Finally, the absolute 
magnitudes of the two stars (M V 1 , MY2) were found from the apparent 
magnitude of the binary (F=0-97), the brightness ratio (/3) of the two 
components and the distance. 

C 

-2 -

-1 -

0 -

+1 

+2 

1 1 1 1 1 1 1 1 r 

c< Vir(primary) 

1 ' I I L J L 
+ • 2 •10 + 0 8 

log m / m Q 

•0 6 •04 

Fig . 11.4. Observational data on the mass-luminosity relation for early-type stars. 

The results for a Vir shown in Table 11.5 are a striking demonstration 
of the value of a high resolution interferometer applied to the study of 
close binary stars. As we have seen, the measurements yield the 
inclination (i) of the orbit which enables us to find the masses from 
conventional spectroscopic data. The measurement of the angular 
size of the semi-major axis (#a) enables us to find the distance which, 
together with the luminosity ratio and angular size of the components, 
makes it possible to find the radius, surface gravity, temperature and 
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absolute magnitude of the stars. To illustrate the value of such 
measurements on early stars fig. 11.4 shows a plot of the existing data 
on the mass-luminosity relation for early stars. It is taken from the 
list of 'reliable' data given by Harris, Strand and Worley (1963) with 
the addition of the more recent data on CO Lac given by Smak (1967). 
The result on a Vir is shown by a cross and it is abundantly clear that 
more measurements would be valuable. 

However, the most interesting aspect of this work on oc Vir is the 
measurement of distance. If we look in the General Catalogue of 
Trigonometrical Parallaxes (Jenkins, 1963) the distance of a Vir is 
given as 53 pc, which is the weighted mean of three independent 
measurements giving 111, 59 and 34 pc. This large scatter is, of 
course, to be expected because at such a large distance the uncertainties 
in the trigonometrical parallax are of the order of ± 50 per cent. Thus, 
this measurement represents an extension of the classical method of 
measuring parallax by, very roughly, a factor of 10. It must also be 
noted that the result depends only on velocity and angle and therefore, 
like the classical measurements of parallax, is independent of inter
stellar extinction or spectroscopic criteria of luminosity. The possi
bilities of such a technique are of considerable interest and are discussed 
further in § 12.3. 

11.5 The emission-line star y Velorum 
A surprising feature of equation (4.30) is that the signal/noise ratio 

of an intensity interferometer is independent of the optical bandwidth, 
provided only that this bandwidth is much greater than the post-
detector electrical bandwidth. The electrical bandwidth of the 
Narrabri interferometer wras about 100 MHz and so, at 443 nm, the 
optical bandwidth could in principle be reduced to about 10~4 nm 
without loss of signal/noise ratio. In practice, of course, such 
extremely narrow bandwidths could never have been used because 
it would have been impossible to match the two optical filters with the 
necessary precision, nor could they have been made to operate in the 
very poorly collimated beam from the reflectors. Nevertheless, it was 
possible to use filters with significantly narrower bandwidths than the 
+ 5 nm used in the main programme. This possibility suggested 
that we could measure the apparent angular size of a star in both the 
light of an emission line and the continuum so that the size and shape 
of the emission region, relative to the exciting star, might be found 
directly. 

The only suitable star, sufficiently bright and within view of the 
interferometer, was y Velorum. This star consists of three com
ponents, the relatively faint star y1 Vel and the bright spectroscopic 
binary y2Vel. The binary shows strong emission lines of ionized 
carbon and the components have been classified as WC-8 (Wolf-
Rayet) and 07; these two stars differ in brightness by about one 
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magnitude and it was believed (e.g. Smith, 1968) that the Wolf-Rayet 
is the brighter. More recently a detailed spectroscopic analysis (Conti 
and Smith, 1972) points to the conclusion that the 07 star is the 
brighter. 

Observations of y Vel were made at Narrabri in 1968 and have been 
reported by Hanbury Brown, Davis, Herbison-Evans and Allen (1970). 
The star was observed in the continuum at 443 nm through the 
standard interference filters which have a bandwidth of 10 nm; 
altogether six baselines, ranging from 10 to 188 m were used and the 
total exposure time was about 80 hours. Observations were then made 
in the light of the C III-IV emission line at 465 nm through filters 
with a bandwidth of 25 nm; four baselines, ranging from 10 to 56 m 
were used and the total exposure was about 50 hours. 

The results showed that the correlation in the emission line (465 nm) 
decreased more rapidly with baseline than in the continuum (443 nm). 
It follows, as expected, that the angular size of the system is much 
greater in the emission line. A detailed analysis, greatly complicated 
by the difficulties of separating continuum and emission line, has been 
given by Hanbury Brown et al. They found that the angular diameter, 
averaged over a range of position angles, is (2-05 + 0-19) x 10~3 seconds 
of arc in the emission line and (0-44 +0*05) x 10~3 seconds of arc in 
the continuum. Thus the apparent size of the emission region is 
roughly five times greater than that of the brighter star. Also, some 
rough information about the shape of this region was extracted from 
the variation of correlation with hour angle or position angle; this 
showed that the emission region cannot be very asymmetrical in shape 
because the ratio of maximum to minimum angular size was less than 
:! over a wide range of position angles. The surface flux (FA) from the 
emission region was found to be (1-17 ± 0-22) x 10~7 erg m 2 s 1 Hz 1 

at 465 nm corresponding to a brightness temperature T(465 nm) = 
12600 + 900 K. The effective temperature of the brighter of the two 
stars in y 2 Vel was found to be TQ = 30100 ± 4000 K. 

The remainder of the analysis by Hanbury Brown et al. is concerned 
with the orbital parameters of the binary, distance, radii, masses, etc. 
and we shall not review it here. It suffices to say that this experiment 
demonstrated that an intensity interferometer can be used to measure 
the angular size and brightness, possibly also the shape, of an emission 
region. It would be of considerable interest, given a more sensitive 
instrument, to observe other emission-line stars and particularly some 
Be stars. This point is referred to briefly in § 12.5. 

11.6 Limb-darkening of Sirius 
In §10.3.2 we noted that any significant difference between the 

variation of correlation with baseline for stars showing different 
decrees of limb-darkening only appears in the secondary maximum of 
the curve. This point is illustrated in fig. 10.2 which shows that the 
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amplitude of this secondary maximum is very small and is expected to 
be of the order 10~2 of the zero-baseline correlation. If we are to 
make a significant measurement of limb-darkening, then it is clear that 
the signal/noise ratio must be high and we are restricted to very bright 
stars. At Narrabri the only possibilities were a C Ma and a Car; their 
signal/noise ratios were such that in a measurement of correlation 
lasting about 25 hours the uncertainty in the result corresponded to 
about 2 x 10 - 3 of the zero-baseline correlation. Although this 
sensitivity was marginal we decided that it would be worth while to try 
to measure the limb-darkening of Sirius. Even if we failed to gain any 
useful astrophysical data it would be valuable to the design of any 
future instrument to explore the practical difficulties. 

Zero 
== level 
uncertainty 

Base l ine in m e t r e s 

F i g . 11.5. Correlation as a function of baseline for Sir ius A (a C M a ) . T h e points 
show the observed results; the full line shows the theoretical curve for a model 
atmosphere (T e =-10 0 0 0 K , log# = 4, A = 450 nm). Results for three long 
baselines are shown on an expanded scale together with their r.m.s. uncertain
ties. (Total exposure 203 hours.) 

We observed Sirius at five different baselines in 1969, 1970 and 1971 
for a total period of 203 hours. The results, normalized to unity at 
zero-baseline, are shown in fig. 11.5. It is interesting to note that the 
amplitude of the secondary maximum is roughly 10~2, as expected; 
presumably this is the first occasion on which it has ever been measured 
for a star. 

To compare these results with theory we have not used the simple 
cosine approximation discussed in § 10.3.2. We have used the radial 
distribution of brightness across the disc given by Gingerich (1969) 
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for a model stellar atmosphere with Te= 10000 K, log£ = 4 and A = 
450 nm. The angular diameter of the model was adjusted to give the 
best fit to the observed points and the calculation took into account the 
partial resolution of the disc by the reflectors. The results are shown 
by the full line in fig. 11.5. It can be seen that the observations are in 
reasonable agreement with theory. 

There was one peculiar point about these observations which may 
be worth recording. An analysis of the correlation observed at the 
three longer baselines suggests that it depended on the position angle of 
the star. The changes with position angle were barely significant and 
it is difficult to decide whether they were real or not and whether they 
were associated with the star or represented some minor systematic 
error in the equipment. As far as the equipment is concerned, it is 
difficult to trace an effect which amounts to only about 5 x 10~3 of the 
zero-baseline correlation; nevertheless, we explored all the systematic 
errors which we could imagine to vary with the position angle of the 
star. These included the effects of elevation angle on the optical 
bandwidth and hence of the normalized correlation, unwanted coupling 
between the arms of the interferometer as a function of the azimuth of a 
star, radio interference as a function of azimuth or time, systematic 
temperature changes throughout the night and so on. No explanation 
could be found. 

We also explored the possibility that these small changes in correla
tion were due to the star. The first and most obvious suggestion is 
that Sirius A is a double star with an angular separation less than 0T 
seconds of arc. The suggestion that Sirius A may be double has been 
made by other authors (e.g. Heintze, 1968, Lindenblad, 1970) on the 
evidence of its spectrum and of very small irregularities in its motion. 
We could find, however, no evidence for a companion in the published 
radial velocities of Sirius A and, although a model can perhaps be 
contrived to fit all the observations, it remains unconvincing unless 
there is some other supporting evidence. Other possibilities exist and 
one of the most attractive is to imagine Sirius A to be surrounded by, or 
close to, some shell or body of gas. We are left in the unsatisfactory 
position of suspecting that there may be something odd about Sirius A 
but we cannot be sure because all the evidence is marginally significant. 

11.7 The Rotation of Altair 
The effects of rotation on the apparent angular size of a star are 

discussed in § 10.3.4. It is concluded that for most stars these effects 
are so small that they would have been difficult to detect with the 
Narrabri interferometer. However, we decided to try to explore the 
effects of rotation on the bright and rapidly rotating star Altair (a Aql). 

The main problem in making measurements was to observe the star 
over a sufficiently wide range of position angles. Thus if Altair is 
observed for 3 hours before and after transit, corresponding to elevations 
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above 30°, the total change in position angle seen by the interferometer 
is only 92° which is insufficient for a satisfactory experiment. We 
extended this range by arranging that observations could also be made 
with the baseline parallel to the direction of the star. In this mode the 
reflectors were set to follow the computed azimuth of the star +90°, 
and — 90° was added to their turntables in the appropriate direction so 
that they looked, one over the other, at the star. Their separation was 
controlled, in small steps, throughout the observation so that the 
projected baseline, as seen by the star, remained constant. The delay 
in the light reaching the more distant reflector was compensated at the 
input to the correlator by a variable delay network. 

Most of the measurements were made with a baseline of 18 m, which 
is the distance at which the correlation has fallen to about one-half of 
that at zero-baseline. The star was observed in 1970 and again in 
1971 for a total of 84 hours with a baseline normal to the direction 
of the star and 56 hours with a projected baseline parallel to the 
direction of the star. The normalized correlation observed at these 
two baselines is shown in fig. 11.6 as a function of the position angle of 
the star. The correlation shows a significant variation with position 
angle and the broken line shows the best fit of a sinusoid to the data. 
The amplitude of this variation is 9 (± 6) per cent of the normalized 
correlation at 18 m. 

3 ~ r 
^ Normal baMl tnca ^ ^ P r o j e c t s bos«lirtcs ^ 

1 2 3 4 
Position angle (radians) 

F i g . 11.6. Corre la t ion as a function of posit ion angle for A l t a i r (a A q l ) obsenet l 
w i t h a baseline of 18 m . (140 hours ' exposure.) 

It is interesting to compare these data with theory. We have 
already noted in § 10.3.4 that Johnston and Wareing (1970) predicted a 
maximum variation of 4 per cent in the apparent angular size and it is 
clear that our observations show a larger effect. But in their calcula
tions they took the equatorial velocity of Altair to be about 0-8 of the 
break-up velocity and there are good reasons (e.g. Hardorp and 
Strittmatter, 1968, Hardorp and Scholz, 1971) to believe that this 
value is significantly too low. We have therefore compared our results 
with the rotating models of Hardorp and Strittmatter. Dr. Strittmatter 
kindly supplied us with the details of a model of Altair assuming an 
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equatorial velocity of 0-99 of break-up. For this model we calculated 
the variation of correlation with baseline as a function of inclination 
and position angle. Fig. 11,7 shows the results for zero inclination 
and for two position angles at right-angles, corresponding to the axis 
(it rotation parallel and normal to the baseline of the interferometer. 
The difference between these two curves gives the maximum variation of 
correlation with position angle and at a baseline of 18 m (7rd0/'A = 2-l) it 
is about 16 per cent, somewhat larger than the observations indicate. 

c: 
3 

Baseline (TTCJG/A) 

F i g . 11.7. Correlat ion as a function of baseline for a theoretical model of A l t a i r 
(a A q l ) . T h e baseline is i n units of (ird&jX) where 0 is the m a x i m u m (equa
torial) angular diameter and d is the length of the baseline. T h e full l ine is for a 
baseline normal , and the broken line for a baseline parallel, to the axis of 
rotation of the star. 

Although it is interesting that the expected variation of correlation 
does take place, the signal/noise ratio is clearly not good enough to 
allow any critical comparisons. The uncertainties in the results would 
allow a variety of models and a wide range of angles of inclination of 
the star's axis of rotation. 

As a further and more detailed check on Strittmatter's model it 
would be valuable to observe the large variation of correlation predicted 
at the baseline corresponding to the secondary maxima of the curves 
in fig. 11.7. Unfortunately we only made measurements at the 
appropriate distance with the baseline normal to the direction of the 
star; no correlation was seen. Subsequent analysis of the data taken 
at 18 m indicates that the expected peak in correlation at this longer 
baseline would be of comparatively shorter duration and would be 
observed at a position angle covered only by the projected baselines. 
This would be an interesting experiment to do, preferably with a more 
sensitive instrument. 
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11.8 Polarization Tests on Rigel 
In § 10.3.5 we pointed out that the apparent angular diameter of a 

star may depend upon the plane of polarization of the light accepted 
by the interferometer. We estimated that electron scattering in a 
stellar atmosphere is unlikely to produce a change as large as 1 per cent; 
but there is the possibility that electron scattering in an ionized corona, 
possibly associated with mass loss from a hot star, might produce 
larger effects which could be measured. With this in mind we decided 
to observe the supergiant B8 star Rigel (jSOri) in two orthogonal 
planes of polarization. 

The optical system of the interferometer was modified to incorporate 
two polarizers which were mounted in front of the phototubes. These 
polarizers were remotely controlled from the control desk so that they 
could be rotated into either of two orthogonal directions, parallel or 
normal to the baseline. Care was taken to ensure that corresponding 
planes of polarization were parallel in the two reflectors. Measure
ments showed that at 443 nm the polarizers passed about 40 per cent 
of the incident light. 

Rigel was observed during November and December 1971 for a 
total time of 19 hours at a baseline of 9-95 m and 59 hours at 19-68 m. 
The observations were carried out by the normal procedure described 
in §9.5 except that the polarizers were rotated through 90° every ten 
cycles (1000 s) of the correlator. The two sets of observations were 
therefore interleaved in time, but were analysed separately as com
pletely independent measurements of the angular diameter of the star. 
If 0Hy Bv represent the apparent angular size of the star with the plane of 
polarization (electric vector) parallel and normal to the baseline 
respectively, then we observed that 

6H = (2-38 ± 0-07) x 10~3 seconds of arc 
8V = (2-44 ± 0-06) x 10"3 seconds of arc 

evjBB= 1-025 ±0-040 
Thus we observed no significant difference between the apparent 
angular diameters of Rigel in the two planes of polarization. 

We have used this result to find an upper limit to mass loss from 
Rigel using the very simple model outlined in §10.3.5. Taking the 
upper limit 0V/6H < 1-065 it can be shown that the corresponding limit 
to the scattering parameter x in equation (10.19) is, approximately, 
#<0*25. Putting R = 50 solar radii, from equation (10.19), the ratio 
of mass to velocity *$yF<40. There is no spectroscopic evidence for 
mass loss from Rigel but if we put V= 500 km ŝ 1 (the escape velocity), 
then the mass loss S must be less than 2 x 10~5 Mo yr"1. Although 
this conclusion is itself of little astrophysical interest the experiment 
points the way to a new way of observing an ionized corona around hot 
stars which might well prove to be valuable given a more sensitive 
interferometer. 
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11.9 Observations of Cerenkov Light Pulses 
As we have already discussed in §5.7, Cerenkov light pulses due to 

cosmic rays entering the Earth's atmosphere will produce correlated 
signals in two separated light detectors. If this correlation is signifi
cant, compared with that from the star under observation, errors may 
be introduced into the measurements of angular size. Early estimates 
by Hanbury Brown and Twiss (1958 a) suggested that this unwanted 
correlation would be negligibly small in the interferometer at Narrabri. 
Nevertheless, their estimates were necessarily uncertain and so the 
observations described here (Hanbury Brown, Davis and Allen (1969)) 
were made to put these estimates on a more satisfactory basis; they 
were not intended to be a general investigation of Cerenkov radiation. 

For the purpose of these experiments it was necessary to enhance the 
effects of Cerenkov radiation in the two reflectors by increasing their 
optical bandwidth and angular field of view. The field was increased 
from 20 to 34 minutes of arc by using larger phototubes and by removing 
the optical system shown in fig. 8.3, thereby exposing the phototubes 
to white light. The electronic correlator was replaced by a discrimina
tor and pulse counter in each channel and by a coincidence counter 
between the two channels. 

The absolute rate of Cerenkov light pulses was found from 

where nc was the observed coincidence rate and nr was the random 
coincidence rate. The Cerenkov rate ncv was measured with the 
two reflectors separated by 10 m and pointing at the same region of 
sky; at 55° elevation it was found that the rate was 

«, v(>A)*6(A/A 0)-i (11.9) 

where // is the pulse height and hQ the height of a pulse produced by a 
single photoelectron. This counting rate increased with elevation 
and if, following Jelley and Galbraith (1955), it is assumed that 

ncv(z)occoslz (11.10) 

where z is the zenith angle, then measurements at Narrabri made at 
two different elevations gave /= 3-0 + 0-3. 

Experiments were also carried out to find how the rate of coincident 
pulses nrv depended upon the separation between the reflectors and 
their relative alignment. The two reflectors were fixed at the same 
elevation (39°) and pointed ( ± 1 minute of arc) in the same direction. 
The rate was then measured for 300 s. The reflectors were then rotated 
on their turntables through equal but opposite angles so that their 
hw> line and elevation angles remained constant but their pointing 
din tions differed in azimuth by an angle 0. The rate was recorded for 
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several values of 0; these measurements were carried out at three 
different baselines, 10, 49 and 94 m. 

The results are shown in fig. 11.8 where the angle 9 is defined as 
positive when the two reflectors were turned towards each other. 
They show that the counting rate increased as the reflectors were 
turned towards each other and reached a maximum at an angle 
which increased with baseline. It is interesting to note that both the 
maximum counting rate and the apparent angular width of the 
distribution was independent of baseline length over the range 10-94 m. 
It follows that the Cerenkov light pulses seen at all three baselines 
appear to come from a source about 8-4 km above mean sea level and 
with a finite angular size of roughly 0-75° between points of half 
intensity. 

T 1 1 1 1 1 1 1 1 r 

- 6 0 ° - ' ' -30° 0° +30° + 60° + 90° 
Turntaole angle (9) 

F i g . 11.8. Relative rate of coincident Cerenkov pulses observed in two spaced reflec
tors as a function of their alignment. T h e angle of elevation was 39 and the 
results are shown for three different baselines. 6 is the misalignment of the 
two reflectors in azimuth and is positive when they are turned towards each 
other. F r o m Hanbury Brown, Davis and A l l e n (1969). 

In their account of these observations Hanbury Brown, Davis and 
Allen (1969) estimate that the Cerenkov light pulses which they detected 
were due to cosmic rays with a primary energy exceeding 1012 eV. 
They compare the results with the theoretical work of Zatsepin (1964) 
and conclude that they are in reasonable agreement. 

These data put the estimates of the effects of Cerenkov radiation on 
an intensity interferometer on a firm quantitative basis. They show 
that any correlation due to this source must vary with zenith angle, 
baseline and relative misalignment of the two reflectors. They are 
used in § 5.7 to show that this correlation, which is a potential source of 
error in measuring stars, is almost certainly negligible in the Narrabri 
stellar interferometer. Furthermore, it is shown in §5.7 that, in any 
more sensitive interferometer designed to reach fainter stars, the effects 
of Cerenkov radiation are likely to be negligible. 
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11.10 A Search for Sources of False Correlation 
One of the possibilities which we had clearly in mind throughout 

the observations at Narrabri was the chance that there might be sources 
of correlation other than the star under observation. Any such source 
might perhaps vary with baseline or time in such a way as to alter the 
true ratio of correlations observed at different baselines and thereby 
falsify the measurements of angular diameter. At the start of our 
programme we envisaged three possible sources of false correlation— 
Cerenkov light pulses from the night sky due to cosmic rays, radio 
interference picked up on both arms of the interferometer and unwanted 
electrical coupling between the two arms. Later in the programme 
we added a fourth when we noticed a report by Morris (1971) that he 
had observed the modulation of the light from several stars by discrete 
radio-frequencies. He claimed that the modulation percentage was 
about 1 per cent and that most of the frequencies lay in the range 3 to 
8 MHz. He attributed this modulation to scattering of the starlight 
by enhanced electron density fluctuations in the ionosphere. We 
realized that such an effect, if it exists, might produce spurious correla
tion which presumably would vary both with baseline and time. 

As a check on these four specific sources we made a number of 
special tests at Narrabri. The measurements of Cerenkov light pulses 
have already been described in §11.9. They put the estimates of 
correlation on a sound quantitative basis and showed that any unwanted 
correlation due to these pulses is negligible. 

As a check on radio interference a search was made on several 
occasions for radio signals in the output of the main amplifier of the 
correlator using a narrow-band communication receiver and, on one 
occasion, also a spectrum analyser; measurable signals could only be 
found when there was known to be something wrong with the double 
screen of the cables from the correlator to the phototubes. 

As a check on unwanted electrical coupling between the two arms 
of the interferometer, prior to the correlator, stringent tests were 
carried out by injecting a strong signal into one channel and using the 
correlator to detect the presence of a coupled signal in the other 
channel. These experiments were carried out in both channels, 
first with the reflectors close together in the garage and then with them 
widely spaced on the track. These tests were extremely sensitive and 
it was gratifying to find that no significant coupling could be measured. 
It is worth noting that any electrical coupling which takes place before 
the phase-switches can produce false correlation in the same way as a 
true correlated source; however, if the coupling takes place after either 
of the phase-switches then false correlation can only be produced by 
second-order processes in the correlator for which the sensitivity is 
greatly reduced. It is, of course, for this reason that one of the phase-
s\\ itches was mounted close to the focus of one reflector so that the 
effects of any coupling between the long cables would be greatly reduced. 
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As a check on the radio-frequency modulation of starlight one 
reflector of the interferometer was directed at the bright star a Lyr and 
then at j3 Cen. The spectral distribution of the output noise from the 
main amplifier of the correlator was examined in detail with a spectrum 
analyser (Hewlett Packard type 8554). The analyser was set to have 
a radio-frequency bandwidth of 1 kHz and an output bandwidth of 
100 Hz; it was scanned slowly over the range 0-10 MHz in two steps 
and the output was recorded by a pen recorder. Several scans of the 
spectrum were made and compared immediately with scans taken 
with the phototube illuminated by a small pea-lamp giving the same 
light flux as the star. A few scans were made over the range 0-100 MHz. 
No trace of any radio-frequency modulation of the starlight was 
detected and the sensitivity was such that a modulation depth of about 
0-5 per cent would have been seen. Obviously these tests were not 
exhaustive as they were conducted on only two nights (20 and 21 June 
1972); nevertheless, the experimental results offered by Morris (1971) 
were not, in our opinion, sufficiently convincing to justify a more 
extensive search. 

As a final overall check that there were no significant sources of false 
correlation due to any cause, suspected or unsuspected, the following 
tests were carried out. The star j3 Cru was observed, following the 
standard procedure, but with a very long baseline of 154 m. At this 
baseline the star must be completely resolved and it was therefore 
expected to produce zero correlation. In an exposure of 55 hours, 
spread over many nights, no correlation was observed and this result 
implies that at 154 m any false correlation must have been less than 
2*5 per cent of the zero-baseline correlation cN(0) expected from an 
unresolved star of magnitude +1-0. Two further tests were then 
made with the shortest possible base-line (10 m). In the first of these 
tests the reflectors followed a region of sky with no bright stars over a 
wide range of elevation angles and, in an exposure of 7 hours no 
correlation was observed. This test was repeated for 10 hours with 
the reflectors at a fixed elevation of 52°; again no correlation was 
observed. Both of these tests were carried out with the system at full 
gain and, because there was no noise in the correlator output due to 
starlight, they represent very sensitive tests for correlation due to 
Cerenkov light, radio interference or any other source in the night 
sky. 

The results of these latter observations are shown in fig. 5.2 as 
experimental upper limits due to Cerenkov light. They were also 
used, together with the tests on coupling, to estimate the upper limits 
to any false correlation shown in fig. 10.1. These limits depend upon 
the gain of the phototubes and the correlator and so they vary with the 
brightness of the star under observation as shown in the figure. The 
limits in fig. 10.1 have been used, as discussed in § 10.2, to estimate the 
uncertainty in the final measured values of angular diameter. 
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11.11 The Effects of Atmospheric Scintillation 
In § 5.8 we presented theoretical arguments to show that the effects 

of atmospheric scintillation on the measured values of correlation 
should be negligibly small. In an attempt to verify this experimentally 

made two tests. Firstly, on the assumption that the effects of 
scintillation are likely to vary from night to night, we compared the 
dispersion in the normalized correlation (cs(d)±as) observed from 
stars on 126 different nights with the dispersion to be expected, see 
equation (10.8), in the correlator output due simply to noise and zero-
drift; the magnitude of the expected fluctuation was established 
experimentally by dummy runs during which the phototubes were 
illuminated by lamps. For 126 nights, the dispersion in cN{d) was 
i)A)9 ± 0-06 of the expected value. There was therefore no significant 
increase in dispersion due to scintillation. 

In a second test we measured the normalized correlation from 
the bright star Sirius as a function of elevation. At the same time we 
recorded the peak to peak fluctuations in the output current of one 
phototube as a measure of the scintillation. The results from a single 
night are shown in fig. 11.9. It can be seen that, although the scintilla
tion increased markedly at low angles of elevation, there was no 
corresponding decrease in the normalized correlation. This result, 
which was confirmed on other nights, points to the conclusion that any 
variation of normalized correlation with scintillation must have been 
small. 

10 o 50 4 0 30 2 0 
Elevation (degrees) 

Fig . 11.9. Normal ized correlation as a function of elevation angle observed for 
Sirius ( a C M a ) . T h e points show the observed correlation with its r.m.s. 
uncertainty; the full line is the observed scintillation index expressed as the 
peak to peak percentages fluctuation in the phototube anode currents. 
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Admittedly these two tests were not exhaustive; in particular they 
were not satisfactorily precise and they are also open to the criticism 
that no conventional estimates were made of the quality of the seeing 
on the various nights. Nevertheless, they were adequate for our 
immediate purpose and offer strong support to the theoretical predic
tion that the effects of scintillation are negligibly small. We may 
conclude that scintillation is unlikely to have introduced significant 
errors into the measurement of angular diameter. It must be remem
bered that even if there were small effects due to scintillation, it is 
unlikely that they introduced errors into the angular size because 
observations at each baseline were always carried out over the same 
range of elevations. 

11.12 Signal-to-Noise Ratios 
A theoretical expression for the signal/noise ratio of an intensity 

interferometer is given in equation (5.17) which is reproduced here 
for convenience: 

((r-l)lri(bvT0!2r,yi*l(\+a)(\+8). (11.11) 

For the interferometer at Narrabri during the years 1970 and 1971 
the parameters in this equation were estimated to have the following 
values: area of reflectors (A1A2y12 = 29*5 m; quantum efficiency at 
443 nm averaged over photocathode, oc(v0) = 0-20 ; overall transmittance 
of optical system (mirrors, lenses, filters), g(v0) = 0-40; efficiency of 
correlator, € = 0-90; polarization factor, /3„=1 ; optical spectral density 
factor (equation (5.6)), o- = 0*85 ; excess noise in phototubes, (/A — l)/fx 
= 0-95; bandwidth of electronic system including phototubes, 
bv = 55 MHz; spectral density factor of the electronic system (equation 
(5.16)), 7] = 0-75; stray light and dark current, (1+a) =1-01; excess 
noise in correlator, (1+<S)= 1*10. Taking n(v0) = 0*95 x 10~4 photons 
m~ 2 s - 1 Hz _ 1 at 443 nm as the flux from a star of zero magnitude 
(B = 0) at the top of the Earth's atmosphere and the atmospheric 
absorption to be 0*39 mag/air mass, then equation (11.11) gives the 
signal/noise ratio from an unresolved (A(v0)F2(v0, d)«1) star of 
magnitude By seen at 45° elevation as 

(5/iV)HMS = 0-53(r0)^10-w ( n t i2 ) 

where T 0 is the time of observation in seconds. 
Fig. 11.10 shows a comparison between the ratios given by equation 

(11.12), shown as a full line, and those actually measured at Narrabri 
for five stars in the period 1970-71. These ratios were all measured 
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at the shortest possible baseline (10 m) where these five stars were 
not significantly resolved. It can be seen that the observed ratios 
were roughly three-quarters of the theoretical values. No definite 
explanation of this discrepancy can be given; it is possibly due to the 
neglect of some factor in the theoretical analysis but it is more likely 
to be the cumulative result of a number of small errors in the parameters 
we have substituted in equation (11.11). For example, the values of 
g{v{)) the overall loss in the optical system, e the efficiency of the correla
tor and (/x — 1 )jfi1 the excess noise in the phototubes were all estimated 
because they were too difficult to measure with satisfactory precision 
and in each case the estimate is likely to be optimistic; furthermore, 
the observations were carried out on many different nights and the 
average atmospheric absorption was likely to have been somewhat 
higher than the assumed value of 0-39 mag/air mass which corresponds 
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Fig . 11.10. Signal to noise ratio versus apparent magnitude for an unresolved star. 
The signal to noise ratio (r.m.s.) observed in an exposure of 1 hour for (1) /S Car, 
(2) a Oph, (3) v C M a , (4) £ Oph , (5) y Crv . The full line is the theoretical 
value from equation (11.12). 

to a very clear night. As a result the theoretical signal/noise ratios 
represent an upper limit and, due to the neglect of minor losses, it is 
to be expected that the observed ratios will always fall below this limit. 
In the present case the discrepancies shown by fig. 11.10 are comparable 
with the uncertainty in the theoretical values and we may conclude 
that the signal/noise ratios observed at Narrabri are consistent with 
the theoretical analysis in chapter 5. 
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CHAPTER 12 
future possibilities 

12.1 Introduction 
We are now in the position to foresee how the work of Narrabri 

Observatory could be developed by building a more sensitive interfero
meter. After ten years' work the existing instrument has reached the 
limit of its capabilities and it is not practicable to improve it by the 
amount required to explore the many exciting possibilities which 
demand a higher sensitivity. We shall have to think in terms of an 
entirely new instrument. 

We must first ask whether or not intensity interferometry is a fruitful 
technique to develop. It is true that, in principle, Michelson's 
interferometer should give a superior sensitivity but, as we have pointed 
out in §4.1, its development has so far been limited by the difficulties 
of achieving the necessary mechanical precision in a larger instrument 
and of making precise measurements in the presence of atmospheric 
scintillation. It may well be that in the course of the next few years 
the problems of making an improved version of Michelson's interfero
meter at optical wavelengths with baselines of a few metres, or even tens 
of metres, will be solved but this would still limit its application to the 
cool stars only. Another interesting possibility is the development of 
coherent 'heterodyne* interferometers using lasers; these are strictly 
analogous to radio interferometers. Such interferometers require 
that the phase of the wave over the reflector should be uniform and 
so it seems that their principal application will not lie in the optical 
band where the wavefronts are distorted by atmospheric scintillation 
but in the far infra-red where wavefronts are more likely to be plane and 
where measurements should have valuable application to cool stars 
and other infrared sources. Thus for measurements of hot stars in 
the visible spectrum and near infra-red, which require baselines of 
hundreds or thousands of metres, it seems unlikely that an instrument 
superior to the intensity interferometer will emerge in the near future; 
at present it would appear that intensity interferometry is the only 
technique which can be used to measure the angular diameters of a 
wide range of stars with precision through the Earth's atmosphere and, 
for hot stars at least, it is likely to remain so for a long time. 

Let us then consider some of the immediate programmes which a 
more sensitive intensity interferometer might tackle, bearing in mind 
that the most important results of research may well prove to be those 
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which one cannot foresee. We shall also discuss briefly how the 
necessary sensitivity could be obtained and what form the new instru
ment might take. 

12.2 The Measurement of Emergent Fluxes, Effective Temperatures and 
Radii of Single Stars 

A major aim of a more sensitive interferometer would be to extend 
our knowledge of the fundamental quantities FA the absolute surface 
flux and T e the effective temperature of single stars. Our existing 
empirical data on these quantities are limited by the few angular 
diameters of single stars which have been measured. Fig. 12.1 shows 
a spectral type-luminosity array of the single stars which have been 
measured at Narrabri. It also shows the very few stars, all cool giants 
or super-giants, which have been measured with Michelson's interfero
meter or by lunar occultations. 
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F i g . 12.1. Stars wi th measured angular diameters. • : measured wi th intensity 
interferometer at Nar rab r i , | : measured wi th Miche l son ' s interferometer. 

It can be seen at a glance that the existing data are sparse over the 
whole diagram and, in particular, there are almost no reliable data for 
stars cooler than type F, or hotter than type O 9-5. The one very 
hot type O star (£ Pup, 0 5f) measured at Narrabri is probably not 
typical of type O stars in general. 

A basic contribution to stellar astronomy could therefore be made 
by an interferometer which is sufficiently sensitive to extend the 
measurements to many more stars so that and Tc could be found 
for a wider range of spectral types and luminosity classes and also as a 
function of age, metal content, spin, etc. A simple count shows that 
there are very few bright hot stars and if we seek to measure a reasonable 
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sample of the extremely hot stars we must build an instrument which 
reaches to a visual magnitude (V) of at least + 7; for example, for an 
interferometer sited at latitude 30° S, there are no type 05 stars 
brighter than + 5 and only four brighter than + 7*3. At the other end 
of the spectrum—M stars—we need an instrument of about the same 
sensitivity but capable of working in the near infra-red. Thus to reach 
a main sequence star of type M 5 we must work at about 800 nm. 
Between these two extremes, 0 5 and M 5, there will be a very large 
number of stars within reach of such an instrument; in the five spectral 
categories (B, A, F, G, K) there are about 15 000 stars brighter than 
+ 7-3. 

Another application of a more sensitive interferometer would be to 
find the radii of single stars as a function of spectral type, luminosity 
class, etc. Obviously the most direct method is to measure the angular 
diameters of stars with known parallax. Since the bright early-type 
stars are too far away for accurate measurements of parallax, this 
method would be confined in practice to stars in the range type A 0 to 
M 1. For example, if we limit the work to stars with an uncertainty 
of less than 10 per cent in their parallax, then our more sensitive 
interferometer (limiting visual magnitude +7) would be able to 
measure only about 28 stars, all of these being in the spectral range 
AO to M l . Although this number is disappointingly low, it must be 
remembered that the number of stellar radii which have been measured 
is small-—less than 20—and most of them were derived from the study 
of eclipsing binaries. 

For stars earlier than type A 0 there are two possible ways of finding 
the radius. It should be possible to measure their angular sizes in 
clusters of known distance ; alternatively, the radii of a few hot stars in 
spectroscopic binaries might be found if their distance can be measured 
by the method discussed in § 11.4. 

12.3 Double Stars 
The observations of a Vir described in § 11.4 show how an interfero

meter can be used to find important parameters of a close binary star 
which cannot be determined spectroscopically. Thus, one can find 
the angular size of the semi-major axis, the inclination of the orbit, the 
angular diameter of at least the brighter component and the brightness 
ratio of the two components. These results, when combined with 
spectroscopic observations of a double-lined binary, yield the distance, 
masses and absolute magnitudes and luminosities of the two stars and 
the radius of the primary. 

In view of the lack of data about the masses and luminosities of 
early-type stars, this is clearly an application of considerable importance 
and it is worth taking a quick look at the number of binary stars which 
could be measured. The first point to consider is that binaries cannot 
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be measured if the angular separation of the two components is too 
great and would be resolved by the individual reflectors of the interfero
meter. In effect this sets an upper limit to the period of a binary as a 
function of the reflector size, the wavelength and the brightness and 
spectral types of the stars. If we exclude all those stars with too great 
a separation, then a count of the remaining double-lined spectroscopic 
binaries shows that there are 35 systems which could probably be 
measured with a more sensitive interferometer sited at 30° S and with 
a limiting magnitude of + 7 on single stars. In making this estimate 
we have taken the limiting magnitude on a binary star to be +6*0, one 
magnitude brighter than a single star, because detailed measurements 
ot the parameters of a binary demand a higher signal/noise ratio. 

By observing these binaries one could measure some reasonably 
precise distances, independent of interstellar extinction, out to distances 
as great as 1 kpc. It may therefore be possible to measure directly the 
distances of one or two clusters or associations. However, it seems 
likelv that the main value of this work would be to establish the masses, 
luminosities and radii of early-type stars. 

There is little doubt that the detailed observations of double-lined 
spectroscopic binaries would be the major double-star programme of a 
more sensitive interferometer but it might also make an interesting 
contribution to the general study of binaries because it can distinguish 
between single and double stars. At Narrabri this can be done with 
reasonable certainty provided that the two components of a double 
star differ by less than 2*5 magnitudes. In an improved instrument it 
should be possible to increase this limit by perhaps one magnitude for 
bright stars. Experience suggests that many previously unsuspected 
double stars would be found and that these data would be valuable 
both in the individual cases and in the general statistics of double 
stars. 

12.4 Cepheid Variables 
One of the most attractive possibilities of a stellar interferometer is 

to study Cepheid variables. It is disappointing that the existing 
interferometer is not sufficiently sensitive to engage in this work and 
that the necessary modifications appear to be unreasonably extensive. 
From latitude 30° S one could observe seven classical Cepheids 
brighter than visual magnitude +5 at minimum light, nine brighter 
than 4- 6 and 20 brighter than + 7. If we consider an interferometer 
with a limiting magnitude of + 7 on single stars, then, allowing for the 
necessary signal/noise ratio, there seems to be no reason why we should 
not measure the changes in apparent angular size as a Cepheid pulsates. 
The results, combined with photometric data, would give the surface 
flux and temperature as a function of phase. Furthermore, by com
bining the observed change in angular size with spectroscopic measure
ments of the radial velocity of pulsation it appears possible, after 
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applying certain theoretical corrections for changes in the atmospheric 
depth, to find the distance and radius of the star. On the very brightest 
Cepheids (e.g. TJ Aql, £ Gem, p Car) one might check whether or not 
the pulsation is radially symmetrical. 

Such a measurement of the distance of a Cepheid, if it can be carried 
out, is purely geometrical and independent of extinction and would 
represent a significant contribution to the calibration of their absolute 
magnitudes. It is also possible that the distance of fainter Cepheids 
might be found with reasonable accuracy by combining simple measure
ments of their average angular size with independent determinations 
of their radius by the Wesselink method (e.g. Fernie and Hube, 1967). 

From this brief discussion we can see that the observations of 
Cepheid variables offer an astronomical programme of exceptional 
interest. The data might contribute to our understanding of how, and 
why, these stars pulsate and provide an independent calibration of 
their absolute magnitudes and hence of the astronomical distance 
scale. 

12.5 Emission-line Stars and Rotating Stars 
Our present knowledge of emission-line stars and of rapidly rotating 

stars depends heavily on theory and on the interpretation of the indirect 
evidence of photometry and spectroscopy. It seems that in some cases, 
for example Be stars, we cannot be sure what is taking place without a 
crude 'picture' of the star. Although a high-resolution optical 
interferometer cannot yet claim to give a 'picture', it certainly can 
yield some significant information about the main features of a star; 
more particularly it can be used to verify whether any particular theory 
about their structure is correct. For example, the work on y Vel at 
Narrabri demonstrates how the size and crude shape of the emission 
region of a Wolf-Rayet star can be found. Admittedly it did not tell 
us with which of the two stars the emission region is associated, 
nevertheless it did provide a direct experimental check on the principal 
feature conventionally attributed to a Wolf-Rayet star. 

In the study of stellar rotation one gains the impression that further 
decisive progress depends upon comparing the shape and brightness 
distributions of actual stars with the principal theories in the field. 
Single rotating stars present an attractive subject for study with an 
intensity interferometer, and it seems likely that a more powerful 
instrument could make significant contributions to this topic. Un
fortunately we have been prevented from exploring this possibility 
satisfactorily at Narrabri because the work demands too high a signal/ 
noise ratio for the present instrument. However, the application of 
high-resolution radio interferometry to the study of peculiar radio 
sources has proved a most fruitful line of work and this should 
encourage us to apply an optical interferometer to the study of 
peculiar stars. 
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12.6 Limb-darkening, Polarization and Extended Atmospheres 
As we have already seen in §11.6, measurements of the limb-

darkening of a single star can in principle be made with an intensity 
interferometer. However, this information is contained in the secon
dary maximum of the visibility curve and consequently, significant 
observations can only be made on stars which are four or five magnitudes 
brighter than the limit of the interferometer on single stars. Thus, 
an interferometer with a magnitude limit of + 7 could be expected to 
measure the intensity distribution across single stars brighter than 
magnitude +2. This would include only about 50 stars, but it must 
be remembered that the existing evidence on limb-darkening is 
derived from eclipsing binaries and is far from adequate. It would 
therefore be valuable to investigate a few stars of different spectral 
t\pes; in particular measurements of some giants and supergiants 
w mild be of great interest since virtually nothing is known about their 
limb-darkening. 

Another interesting line of research with a large optical interfero
meter is suggested by the experiment with polarized light reported in 
Jjll.8. By measuring the apparent angular size of a star in two 
orthogonal polarizations, parallel and normal to the baseline, it 
should be possible to detect extended hot atmospheres by the effects 
of electron scattering. This question remains to be analysed in 
detail but, at first sight, there are some interesting possibilities. For 
example, a preliminary calculation suggests that one could measure 
the extended atmospheres around those OB supergiants which show 
spectroscopic evidence (Morton, 1967) of mass loss of the order 
1"' 8 M 0 y r 1 at 1000 kms- 1. 

1 2 . 7 Interstellar Extinction 
One other possible application of a more sensitive interferometer, 

forseeable at present, would be the measurement of interstellar 
extinction. The aim of such a programme might be to measure the 
ratio of total to selective extinction, to establish whether there is a 
component of neutral extinction, and perhaps to study variations with 
direction over the galactic plane. To do this one might use a class of 
s tars for which the surface flux FA is first standardized by measuring 
n e a r b y stars. The angular sizes of more distant members of the same 
cla-s would then be measured and, by combining these results with 
spectral scans, the apparent values of FA would be found for these 
distant stars and hence one could find the neutral and selective com
ponents of extinction. Ideally one would like to use luminous super
giants with absolute magnitudes as high as —8*0; in the absence of 
interstellar extinction such stars could be measured at distances 
exceeding 10 kpc with an interferometer capable of reaching to +7 
a; :. e\ en with an extinction of 2-0 mag/kpc, one could reach distances 
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up to 1*9 kpc. However, such stars are comparatively rare and a 
programme based on relatively common B 0 stars would allow measure
ments out to 2 kpc in the absence of extinction and to nearly 1 kpc for 
an absorption of 2-0 mag/kpc. 

12.8 The Specifications of a New Instrument 
The preceding review points firmly to the conclusion that any 

successor to the present intensity interferometer at Narrabri ought to 
have sufficient sensitivity and resolving power to measure single stars 
with a limiting magnitude of at least + 7. Such an instrument would 
measure a star of magnitude +6 with a precision of + 5 per cent in 
two nights, a star of + 5 in 2\ hours, and a star of + 4 in about half an 
hour. To increase the limiting magnitude of the existing instrument 
from 4- 2-5 to 4- 7 (a factor of about x 60 in sensitivity) is not possible 
by any reasonable modification. We must therefore design a com
pletely new instrument. 

Two obvious ways of improving the sensitivity are to increase the 
reflector size and to increase the electrical bandwidth; it is not practi
cable to increase the exposure times compared with those at Narrabri 
because they are already inconveniently long. Another possible way 
is to increase the number of independent optical channels; in principle 
we can split the light from the star into a very large number of separate 
wavebands, each of which has its own phototubes and correlator. It 
was shown in §4.2.3 that the signal/noise ratio is independent of the 
optical bandwidth, provided that it is large compared with the electrical 
bandwidth; thus if we could split the light into m separate channels 
without loss, we should gain a factor of (m)112 in the sensitivity. 

Taking these three factors—area, bandwidth and number of optical 
channels—it is simple to show that the signal/noise ratio depends 
upon them as follows 

SINjcA(bym)li* (12.1) 
where A is the geometric mean of the areas of the two reflectors, /;v is 
the overall electrical bandwidth of the correlator and the phototubes, 
and m is the number of independent optical channels. At Narrabri 
A = 30 m, bY % 60 MHz, and m = 1. 

Consider first the question of how much improvement we can expect 
to gain by increasing the electrical bandwidth. There appear to be 
two practical limits: the performance of available phototubes and the 
precision with which the path lengths and delays in the two arms of 
an interferometer can be maintained equal. The bandwidth of the 
present interferometer is limited by the phototubes to about 60 MHz 
but there are similar phototubes in existence with bandwidths of 
300 MHz. Looking at more advanced phototubes, still in the experi
mental stage, it seems reasonable to assume that a bandwidth of about 
1000 MHz or more will be possible in the not too distant future. 
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Turning to the limitations set by path differences and time delays, we 
saw in §4.2.4 that an increase in electrical bandwidth puts more 
stringent requirements on the precision of construction and movement 
of an interferometer. For example, if we make the electrical band
width 1000 MHz and require that any loss of correlation due to path 
differences or delays should be less than 1 per cent, then we must 
preserve the two paths through the instrument equal with a precision of 
~ 1 cm, and any differential time delays in the electronics must be less 
than 0-3 ns. Experience at Narrabri suggests that these requirements 
might be met in a large instrument but that to demand an even higher 
precision is unrealistic and would endanger one of the main advan
tages of an intensity interferometer which is, of course, its freedom 
from the necessity of extremely high mechanical precision. Without 
more practical evidence it is not worth pursuing this topic further and 
we can only conclude, tentatively, that the bandwidth of an interfero
meter may be as high as 1000 MHz, giving an increase in sensitivity of 
x 4 compared with the present instrument at Narrabri. 

The possible number of independent optical channels presents an 
even more difficult question and can only be solved by detailed design 
and experiment. At first sight it lookes easy to split the light into 
several independent spectral bands illuminating separate detectors. 
However, a closer look shows that one cannot use conventional methods 
which depend upon angular dispersion, such as prisms and gratings, 
because of the imperfect collimation of the light from a large and 
necessarily crude reflector. It has been suggested that the problem 
might be solved by splitting the light into two orthogonally polarized 
beams and then passing each beam through a cascade of narrow-band 
interference filters; each filter would transmit its own band to an 
associated phototube and reflect the remainder of the light to the next 
filter. A preliminary analysis of this scheme suggests that ten inde
pendent optical channels might be obtained in this way. We shall 
therefore assume, again tentatively, that m=\0 and that the corres
ponding gain in sensitivity, relative to the Narrabri instrument, is x 3. 

Finally we arrive at the question, how large shall we make the 
reflectors? Clearly the answer will control to a large extent how much 
the instrument will cost and whether or not our whole programme is 
practical. Taking the proposed improvements in sensitivity of x 4 
due to electrical bandwidth and x 3 due to several optical channels, 
we need to increase the area of the reflectors by a factor of x 5 
(A = 150 m2) to reach the required overall improvement of x 60 in the 
sensitivity. Are such large reflectors feasible? An effective discussion 
of this point needs to be focused on to some specific configuration. 

12.9 A Possible Configuration of a New Interferometer 
Any proposed configuration of a new instrument capable of resolving 

single stars of magnitude + 7 must have, in addition to the three major 
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requirements just discussed in §12.8, a maximum baseline of at least 
2 km; to exclude excessive background light from the night-sky the 
angular diameter of the field of view of each reflector must be limited 
to about 3 minutes of arc; to avoid loss of correlation path differences 
between the two arms of the interferometer must be less than ~ 1 cm. 

Fig. 12.2 illustrates one-half of the configuration which has been 
proposed by the Chatterton Astronomy Department of the University 
of Sydney. In fig. 12.2 light from the star is received on the flat 
mirrors or coelostats (Fv F 2) and is reflected to the fixed paraboloidal 
reflectors (Rx, R2) which focus it on to the fixed detectors (D 1 ( D 2). 
The coelostats are mounted on trucks which roll on straight rails 
running east and west. As the star moves over the sky the two 
coelostats move so that the projected baseline (AB in fig. 12.2) remains 
constant and the light from the star arrives at the two detectors at the same 
time, so that 

AF X + F X R 2 = BF 2 + F 2 R 2 . (12.2) 

This basic configuration has a number of advantages; the most 
important are that the projected baseline can be held constant through
out an observation; there is no relative time delay in the light reaching 
the two detectors and the complexity of a wideband multi-channel 

Light from star Light from star 

Coelostat Detector Fixed Detector- Coelostat 
paraboloids 

3B 

\ 

F i g . 12.2. A proposed configuration for a large intensi ty interferometer. 

1 7 0 



variable electrical delay is avoided; the optical systems are fixed and 
accessible and can have short, fixed leads to the correlator; the baselines 
can be extended at any time by laying more railway track. It has the 
disadvantages that the rail track is necessarily longer than the projected 
baseline ; the light from the star must travel along the baseline thereby 
increasing atmospheric extinction and scintillation and, for very long 
baselines, introducing some differential velocity dispersion. Never
theless, this proposed configuration seems preferable to all the alterna
tives which one can visualize. The obvious alternative—the circular 
layout which has worked so well at Narrabri—is not attractive for a 
larger instrument on several grounds, the most important objection 
being that the maximum resolving power is permanently fixed by the 
diameter of the circular track and cannot be increased without a major 
reconstruction. 

As it stands, the configuration shown in fig. 12.2 would not be 
satisfactory for the very large reflectors (150 m2) that we propose. 
The individual reflectors and coelostats would be inconveniently large ; 
their size would seriously complicate the design of the optical system 
at the focus; and they would partially resolve many of the stars and 
thereby complicate the interpretation of the measurements. For this 
reason it is preferable to make each unit half the required size and to 
use a system of four reflectors and coelostats, each pair running on 
parallel tracks. 

The proposed coelostats and reflectors are circular in outline and, 
after allowance is made for the reduction in their effective area due to 
the inclination of the coelostats, it is found that they must have a 
diameter of about 12 m. From existing experience of building large 
mosaic reflectors, for example solar furnaces, one can say that the 
proposed fixed reflectors can be built without much difficulty and at a 
reasonable cost. The critical question is whether or not the moving 
coelostats can also be built at a reasonable cost and with sufficient surface 
accuracy to permit the use of a 3 minutes of arc angular field of view. 
In an attempt to answer this vital point a preliminary structural design 
of the coelostats was carried out which showed that the required 
performance can readily be achieved by a steel structure of very moder
ate mass (about 16 Mg) supporting polished aluminium panels. 

Many other problems of detail such as the precision of the rail track, 
positioning and control of the coelostats, the design of a multi-channel 
correlator and the design of a multi-channel optical system have also 
been studied. All our investigations lead us to conclude that the 
instrument could be built, and that the overall cost would be reasonable 
-roughly that of a 2 m telescope complete with dome and accessories. 

12.10 Summary 
In this chapter we have argued that, following the pioneer work of 

the stellar interferometer at Narrabri, a high-resolution interferometer 
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is an important tool in stellar astronomy. Some of the most interesting 
applications (e.g. the study of Cepheid variables) remain unexplored. 
To carry on this work requires a more sensitive successor to the 
Narrabri interferometer and we have suggested that the next stage in 
this work should be to build a new instrument which will reach to 
stars of magnitude + 7. Preliminary consideration has been given to 
the design and cost of such an instrument and it has been concluded, 
tentatively, that it could be built, and that it would cost roughly as 
much as a conventional 2 m telescope. 

At the present time this proposed instrument is no more than some 
drawings and a model. Nevertheless, the scientific rewards of 
carrying on the work of the Narrabri stellar interferometer would be 
great; one can only hope that in due course the opportunity to do so 
will arise. 
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ABBREVIATIONS 
of constellations used in the text 

Aql Aquila (Eagle) 
Boo Bootes (Herdsman) 
CMa Canis Major (Great dog) 
C M i Canis Minor (Small dog) 
Car Carina (Keel) 
Cen Centaurus (Centaur) 
Cct Cetus (Whale) 
Cru Crux (Southern Cross) 
Crv Corvus (Crow) 
Eri Endanus (River Eridanus) 
Gem Gemini (Heavenly twins) 
Gru Grus (Crane) 
Leo Leo (Lion) 
Lyr Lyra (Lyre) 
Oph Ophiucus (Serpent bearer) 
Ori Orion (Hunter) 
Pav Pavo (Peacock) 
Peg Pegasus (Winged Horse) 

PsA Piscis Austrinus (Southern fish) 

Pup Puppis (Poop, stern) 

Sgr Sagittarius (Archer) 

Sco Scorpius (Scorpion) 

Tau Taurus (Bull) 

Vel Vela (Sails) 

Vir Virgo (Virgin) 

177 





T H E NAMES OF STARS 
referred to in the text (from Allen, 1963) 

i Aql, Altair a Lyr, Vega 
V Aql, a Oph, Ras-Alhague 
\ Boo, Arcturus £ Oph, Alnitak 
A CMa, Sirius a Ori, Betelgeuse 
P Cma, Mirzam P Ori, Rigel 
8 CMa, Wezen Y Ori, Bcllatrix 
€ CMa, Adhara £ Ori, Alnitak 
r) CMa, Aludra e Ori, Alnilam 
v C M i , Procyon * Ori, Saiph 
in Car, Canopus € Ori, — 
P Car, Miaplacidus a Pav, Peacock 
p Car, — P Peg, Schcat 
P Cen, Hadar v PsA, Fomalhaut 
e Cen, — C Pup, Naos 
a Cet, — tr Sgr, Nunki 
Y Cru, Gienah « Sgr, Kaus-Austral 
P Cru, Mimosa a Sco, Antares 
x. Eri, Achernar 8 Sco, Dzuba 
y Gem, Alhena A Sco, Shaula 
C Gem, — a Tau, Aldebaran 
a Gru, Al Na'ir S Vel, - -

at Leo, Regulus y Vel, — 
j3 Leo, Denebola a Vir, Spica 
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Amplifiers, 76-77, 103-104 
Analytic signal, 32 
Angular size 

equivalent uniform disc, 114, 122— 
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limb-darkened star, 123, 125, fig. 
10.4, 134-135, Table 11.1 

radio sources, 2, 3, 84-88 
Atmospheric extinction, 16, 90, 116, 

132, 160-161 
Atmospheric irregularities, 68-69, 71-
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Atmospheric scintillation 
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angular, 71-72 
correlation length, 72 
Michelson's interferometer, 2, 25, 

43-45, 51, 162 
radio intensity interferometer, 4, 

86-88 
optical intensity interferometer, 4, 

9, 18, 52, 54, 67-72, 87, 120, 
159-160, fig. 11.9 

optical telescope, 2 
phase, 68-69 

Australian Research Grants Com
mittee, vii 

Auto-correlation function, 38, 54 

Bandwidth 
electrical, see Electrical 
optical, see Light 

nalmer jump, 138 
Haseline 

choice, 114-115, fig. 9.2, 127-128 
misalignment, 121-122 
for proposed new instrument, 170 

Bessel function, 43 
Binary stars, 18, 20, 27, 126-128, 

132-133, 141-148, 163-165 
Bose-Einstein statistics, 6, 31, 55 

Catenary cable, 19, 94 
Cepheid variable, 145, 165-166, 172 
Cerenkov light, 18, 64-67, 121, 154-

159 
Chatterton Astronomy Department 

(Sydney), 170 

Coherence 
complex degree of coherence, 27-

29, 34-37, 42-44, 50-52 
degree of coherence, 24, 26, 40, 42, 

57, 60-61 
length, 36, 39, 49 
mutual coherence function, 34, 36, 38 
partial coherence factor, 60-63, 

fig. 5.1, 123 
spatial coherence, 35-37, 53 
temporal coherence, 35-38, 44 
time, 39, 55, 57, 81. 

Coincidence 
counter, 54-58 
counting, 10, 56-58, 79-83 
counting interferometer, 57, fig. 4.9 
excess, 58, 81-83 
random, 81-83 

Computer, see Control 
Computer programme, 142 
Control 

building, 94, 100 
computer, 100, 116, 122 
desk, 94, fig. 8.7, 115-116 
of reflectors, 100-101 

Correlation 
and aperture size, 59-62 
and baseline length, 27, fig. 2.3, 50, 

87, fig. 7.3, 124-128, fig. 10.2 
and Cerenkov light, 65-66, fig. 5.2 
and degree of coherence, 29 
and polarization, 40, 57 
and radio interferometer, 86 
correction for zero-drift, 118 
cumulative, 116-117, fig. 9.3 
factor, 60, 78-79, fig. 6.3 
false or spurious, 103, 104, 107-108, 

121, fig. 10.1, 157-158 
laboratory measurement, 8, 9, 10 
normalized, 79, 86-87, 117-119, 

122, 142 
of intensity fluctuations in light, 3, 

39-40 
of fluctuations in photoelectric 
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