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SUMMARY

We describe a generalized confocal optical microscope which measures both phase
and amplitude, separately and simultaneously. The system is based on heterodyne
inferometry, and is extremely fast and accurate. Together with the associated signal
processing and data acquisition system, it can take data at the rate of 50,000 points/s,
to an accuracy of 12 bits in amplitude and about the same in phase. The 1o phase error
is 0-1°, corresponding to a height uncertainty of 0-1 nm. Unlike most phase-sensitive
systems of this accuracy, the phase data are not differential, and we are not restricted
to small phase changes. Having phase and amplitude enables use of digital filters to
modify the coherent transfer function of the microscope in almost any way we desire
(within the bandwidth available), and in particular to double the spatial resolution of
the system without resorting to ultraviolet light or ad hoc image processing procedures
such as non-linear transformations or the introduction of additional assumptions about
the sample. In contrast to ordinary apodizing schemes involving annular pupils and
graded neutral-density filters, the digital filters used here are very easily changed to
optimize the trade-off of resolution versus ringing. Computationally efficient expres-
sions for the line-spread function and step response of a confocal microscope are
developed for use in comparisons.

INTRODUCTION

The confocal microscope is finding wide use in semiconductor metrology, biology,
and other fields, because of its excellent resolution, depth discrimination, and lack of
edge artefacts (ringing). The classical confocal microscope measures only intensity,
and like an ordinary bright-field microscope, it is rather insensitive to phase objects.
Its point-spread function (PSF) is not easily modified by the user, except to increase
or decrease the numerical aperture; although satisfactory for most purposes, it
possesses serious drawbacks from a quantitative measurement point of view, which are
discussed below.
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The confocal microscope was first considered by Minsky (1957), and since by many
others; Sawatari (1973) was the first to build a heterodyne interference microscope,
and a later version with phase sensitivity was developed by Peterson et al. (1984) at
about the time of our early work. Both of these systems are of the single-beam,
mechanically scanned type, and neither has the precision nor stability of our system.
Wickramasinghe er al. (1982) have made a scanning a.c. differential interference
contrast microscope, which measures the derivative of the phase along the scan
direction; accurate reconstruction of a profile from its derivative is difficult, however.

Our system (Jungerman et al., 1984; Hobbs et al., 1985) uses an acousto-optic Bragg
cell in a unique configuration to make an electronically scanned, two-beam, heterodyne
interference microscope, capable of measuring the amplitude and phase of the received
optical beam simultaneously and independently. It operates in a shearing mode; one
beam is stationary and the other scans. Since both beams are reflected from the sample,
any vertical vibration of the sample causes the same phase change in both beams, so
the phase difference (which is what an interferometer measures) does not change, and
no noise results. The superior stability afforded by this arrangement allows angstrom
height measurements at d.c. in ambient air. This is in sharp contrast to most inter-
ferometers, where the 1/f noise is dominant, and good sensitivity is difficult to attain.

Because this is a shearing rather than a differential system, it is not limited to small
phase shifts; it is equally accurate throughout 27 radians. As in any monochromatic-
light interferometer, phase shifts larger than 27 introduce an ambiguity, which in this
case is mitigated since depth-discrimination supplies additional height information.
The electronic scanning system is very fast, accurate, and repeatable. It is coupled to
a data acquisition system of our own design (Hobbs, 1987) which allows it to acquire
data at a pixel rate of 50kHz, with an accuracy of 0-1° of phase and 12 bits in
amplitude. This performance level does not by any means represent an upper limit to
what could be achieved with this technique.

Having both phase and amplitude, along with a good theoretical expression for the
coherent transfer function (CTF) of the microscope allows us to use simple digital
filters to eliminate the disadvantages of the type 2 (confocal) transfer function, specifi-
cally its inferior bandwidth utilization and its cusp at the origin (which causes a slow
monotonic tail off in the PSF) while maintaining control over the edge artefacts. As
will be seen, the trade-off between sharpness and edge ringing is very favourable;
improvements in edge resolution of more thana factor of two can be obtained with very
reasonable ripple and very fast settling of the step response.

It is in this regard—2n phase sensitivity, 0-1 nm height accuracy, high speed, and
completely arbitrary PSF (within the bandwidth limit)—that we claim this system to
be a true generalization of the confocal microscope.

THE AMPLITUDE POINT-SPREAD FUNCTION

In a coherently illuminated bright-field (type 1) microscope, the amplitude PSF
is simply the amplitude distribution of the illumination system, normally an Airy
pattern:

hy (x5 ) = 2nNA?jinc[ENA(x* + y*)'?], )

where jincx = J, (x)/x. This pattern corresponds to a pupil illuminated uniformly out
to a numerical aperture (NA):

H,(p, q) = circ[(p* + ¢")INA’], 2)

and is typically generated by imaging an unresolved pinhole light source on to the
sample. The classical confocal (type 2) microscope uses two pinholes, one on the
illumination side and one on the detector side of the optical system, to produce a
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microscope whose PSF is proportional to the square of the illumination pattern,
hy(x, ¥) = 4nNA*jinc?[ENA(x* + v*)'?]; 3)

by the convolution theorem, the transfer function is the self-convolution of the
type 1 microscope’s,

H,(p; ) = (2[m)[cos~"|a| — |al(1 — 6*)"]circ]a], (4)

where ¢ = 1/(2NA)/p* + ¢°, normalized for unit response at zero spatial frequency.
Since H, is real and non-negative (at least on-focus), its self-convolution H, has twice
the bandwidth. Unfortunately, the type 2 transfer function is not twice as good,
because it is roughly conical in shape (in two dimensions), has a cusp at the origin, and
thus rolls off quite steeply in the mid-frequencies. Although it is often stated that the
type 2 microscope has 1-4 times the resolution of the type 1, this is somewhat mis-
leading since this figure is the ratio of the 3-dB widths of the PSFs; the step responses
have almost the same rise interval (10-909%,), with the type 1 even being a bit sharper,
although the type 2 settles down more rapidly and exhibits much less overshoot and
ringing. It is the absence of ringing which is important in semiconductor applications,
because critical dimension measurements rely on threshold algorithms, which are
easily confused by such artefacts. In addition, pinhole-type microscopes are sensitive
only to intensity, which tends to limit their usefulness to samples with fairly strong
amplitude contrast.

The type 2 transfer function still leaves something to be desired for microscopy
applications. Although it has twice the bandwidth of the type 1, it uses its bandwidth
poorly; it rolls off quite sharply at mid-frequencies, compromising the edge response.
In addition, while avoiding the type 1’s jump discontinuity at the band edge, it exhibits
a cusp at zero frequency which leads to a slow, nearly monotonic tail in the step
response, making precise height and reflectivity measurements unnecessarily difficult
near sample discontinuities such as the edges of integrated circuit (IC) lines.

OPTICAL SYSTEM

The optical system is shown schematically in Fig. 1. A collimated, uniform beam
from a single-frequency argon-ion laser operating at 514 nm comes into a tellurium-
dioxide acousto-optic (A-O) deflector, located at the pupil of a commercial microscope
(Leitz Orthoplan). The two beams (zero- and first-order) from the A-O cell are
focused to diffraction-limited spots on the sample, with beam axes normal to the
surface. Light reflected from the two spots retraces its path, and re-emerges through
the A-O cell. Since two beams enter the cell on the return path, four receive beams
emerge, in two coaxial pairs. Within each pair, one beam comes from each spot. One
pair, consisting of the never-diffracted beam and the twice-diffracted (once on transmit
and once on receive) beam, travels back towards the laser, where minor misalignment

Microscope  sample
1

From Laser A-O Celll

! |

Photodiode

Field Stop  Aperture
Stop

Fig. 1. Schematic diagram of the optical system.
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keeps them from re-entering the laser cavity. The other two beams, namely the zero-
order transmit beam which is diffracted on receive, and the first-order transmit beam
which is undiffracted on receive, emerge from the cell at the Bragg angle; due to the
differing diffraction geometry on transmit and receive, one of these is upshifted and
one downshifted by the A—O cell drive frequency f,. These two beams are made to
interfere on a photodiode, placed at an image of the A-O cell so that the beams do not
move off the diode as they scan.

The signal from the photodiode is proportional to the squared modulus of the beam
amplitude, filtered by the frequency response of the diode circuit; since the incoming
beam has components at two frequencies, the diode output current has two d.c. terms
corresponding to the average power, plus an a.c. term at the beat frequency 2f,, whose
amplitude is the product of the optical amplitudes and whose phase is the difference
of the optical phases.

This signal is converted to a constant 60-MHz IF, filtered, and finally digitized.

The heterodyne interferometer mounts on a standard metallurgical microscope, and
allows viewing of the beams as they scan, which is very useful for alignment, focusing,
and positioning. The system could be extended to a 2-D scan without much difficulty,
by including another A-O cell and a transfer lens.

In the course of a scan, the A-O cell drive frequency varies from 50 to 100 MHz,
so that the rf photocurrent is at 100-200 MHz. Typical gas lasers have a mode spacing
of 150—-400 MHz, so care must be taken to avoid spurious signals due to the beating
of the other modes (all of which would be split by the A-O cell) getting into the IF
passband. Our instrument uses a single-frequency argon-ion laser operating at 514 nm.
A frequency-doubled, diode-pumped Nd: YAG laser (532 nm)—with its very large
mode spacing (10 GHz or so), small size, and comparatively low cost—would be a good
alternative, especially since the problem of large (109) amplitude fluctuations seems
to have been solved.

The scan size is determined by the focal length of the microscope and the deflection
angle of the A-O cell. The particular cell used here was a Matsushita EFL.D-340.

In the past, A-O deflectors have had a bad reputation for beam distortion, which has
made them somewhat unpopular in imaging applications; we have found with both
devices we have tested (the other one was a one-off from Crystal Technology) that
diffraction-limited resolution was easily obtained with pupil sizes of 3 or 4mm.

ANALOG SIGNAL PROCESSING

The photodiode is essentially a current source, sO for best sensitivity, its load
resistance should be as large as possible. Real photodiodes have a shunt capacitance
of a few picofarads at least; to achieve a 200-MHz bandwidth in an untuned circuit
requires a load resistor of at most a few hundred ohms. Better results can be
achieved with a matching network; a theorem of Bode (1945) states that in matching
a resistance—capacitance to a pure resistance, the matching gain G,, of the network
satisfies

— |, togl1 - |Gm(w)|]dws%. (5)

The photodiode matching network shown in Fig. 2 achieves a measured worst-case
return loss of 5 dB into 50Q over a 100-210-MHz bandwidth, less than 0-5 dB worse
than the Bode limit for a perfect rectangular frequency response.

Figure 3 is a block diagram of the analog signal processing subsystem. The signal
from the photodiode at 2f, is amplified, mixed with a frequency-doubled, down-
shifted version of the A—O cell drive signal to yield a constant 60-MHz IF signal,
and finally filtered, split into two highly isolated channels, and amplified to a nominal
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Fig. 2. Schematic diagram of the photodiode matching network.
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Fig. 3. Block diagram of the analog signal processing subsystem.

level of 0 dBm. The outputs go to amplitude and phase digitizers of our own design,
which are described in Hobbs (1987). These digitizers operate at a 50-kHz sampling
rate with a phase uncertainty of 0-1° (1¢) and an amplitude uncertainty of 0-29, of the
reading—essentially the performance of a good lock-in amplifier, at 500 times the
speed. The use of commercially available digitizing arrangements, such as a down-
converter followed by a lock-in amplifier, or in-phase and quadrature detection, was
rejected because such schemes lack the accuracy and/or speed to match the capabilities
of the microscope.

The A-O cell is driven by a voltage-controlled oscillator (VCO) which in turn is
controlled by computer via a digital-to-analog converter (DAC). The scan is linearized
by performing a secant-method search through the DAC code space (using a GPIB-
controlled frequency counter) to find N codes which generate N equally spaced
frequencies.

There is one somewhat subtle problem with the system as described so far. The A-O
cell’s time-bandwidth product determines the number of resolvable spots, so with a
bandwidth of 50 MHz, one must contend with a delay of about 6 us in the A-O cell.
As the frequency changes, this delay causes a large linear phase shift (amounting to
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hundreds of cycles over the scan range) between the photocurrent and the doubled
VCO signal. This large delay must be cancelled somehow if the phase sensitivity is to
be useful. At present, the phase slope is removed numerically, by forcing the average
phases of the first five and last five points in the scan to be equal; this method is
convenient, but places very stringent demands on the stability and repeatability of the
VCO. Other ways to accomplish this would be to use a bulk-acoustic wave delay line
after the frequency doubler, and then trim the null by translating the A-O cell along
the acoustic propagation direction, or to replace the VCO with a direct digital syn-
thesizer, which has the required accuracy and tuning speed.

IN-FOCUS TRANSFER FUNCTION AND PSF

Although this instrument has no pinholes, it is nevertheless of type 2. In this section,
we develop the theory for this instrument, in order to elucidate the origin of the lateral
resolution and to justify the approximations made.

Consider the instantaneous power incident on the detector, which is considered to
be infinite in extent (in practice it need only be bigger than the beam); if the input
scalar field in reciprocal space is ¥/(k), the incident power is:

d*r’ S D 4
Since the numerical aperture at the detector is small, n - k' is approximately k’. Using
Rayleigh’s theorem to transform into real space, we obtain for the photocurrent

I=R[[ & pex)P. ™
pupil
In order to get Eq. (7) into an integral over the sample surface, we use the far-field
form of the Rayleigh-Sommerfeld integral formula,

exp(ik|x — x'|) n-(x —
|x —x'|?

X)yx'yd2x. (8)

v = (fin) ||

sample

Consider the fields on the surface of a sphere of radius a. If we define angular
variables p = x/a, ¢ = y/a, then

|x— x| = (@ +x %X —2x-x)"?~a(l —x-x'[d") + O(a™"). 9)

For large a, X - X'/a < a so that this term can be dropped in the denominator; however,
this term is never small compared to unity, so it must be retained in the exponent. If
we discard the large constant phase term exp(tka)/a, then the angular spectrum is the
Fourier transform of the source distribution, multiplied by the hemispherical window
function circ[(p? + ¢*)/NA*]{/(1 — p* — ¢*). The window function arises from the
obliquity factor n - (x — x’) in Eq. (8), and from the finite range of angles available, not
from any effect of lenses. As a corollary, if we wish to calculate the scattered field when
a beam is incident on the surface, we must put in the inverse of this obliquity factor;
in most cases of interest this means that the obliquity factors cancel out, at least
approximately.

There is no general theory for what a real lens does. The unphysical ray model is
used in lens design, the thin lens (for small NA) and Fourier transformer (for large
NA) models in most imaging theory. Sometimes an extra cos'?0 apodization factor is
added for energy conservation; this seems a needless elaboration in an approximate
theory, especially since energy conservation in propagating from the source to
the detector (for a perfect reflector) is ensured anyway by the cancellation of the
obliquity factors.
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Since we are interested in the large-NA limit, we consider an aplanatic, non-
vignetting lens of unit focal length. Apart from its finite NA, it performs an ideal
unit scaling operation from the angular coordinates p and g to pupil plane spatial
coordinates x” and y”, provided the sample is at the front focal plane. If the NA
were unity, the ideal unit focal length objective could be expressed as O[Y(p, q)] =
Y(x”, ¥"). Hereafter, the distinction between (p, ¢) and (x”, y”) will be dropped. A lens
with NA4 < 1 merely cuts off those spatial frequency components which fall outside the
circle p*> + ¢* > NA?. Re-writing Eq. (7) for the photocurrent gives

1=R[[" dpdgly.(p, @l circl(p* + @)NA), (10)

where i, is the reflected field. In general, real samples will have topography; they
will not be perfectly flat. Nevertheless, for analytical tractability, the sample is
modelled as an infinite plane, with a complex amplitude reflection coefficient p(x, y),
which includes both reflectivity and height information. In this case ¥, (x, y) =
Vitam (%> 2)P(%5 3); 50 that (P, @) = Yipum( P> O*p( s ), Where » denotes convolution.

If looked at too closely, p is a somewhat poorly defined quantity, since we expect it
to depend on both k and x. Dependence on x arises from spatial inhomogeneities in
the sample (features), while k dependence comes from both intrinsic variations of p
with k (e.g. the Fresnel formulae for dielectrics) and the different phase shifts
exp(tk, z) suffered by different plane waves due to height variations in the sample. It
is thus analogous to a classical variable in quantum mechanics, whose validity depends
on its not varying too rapidly with x. In this case, we can integrate over the k
dependence, arriving at an average amplitude and phase factor to apply to all plane
wave components of the incident beam; this factor is allowed to vary slowly with x as
well. The assumption of constant phase shifts is equivalent to infinite depth of field,
and hence restricts us to small height changes, Az < 1/(1 — cos () where sinf) = NA;
this is physically reasonable since if the sample is going in and out of focus during
scanning, the infinite plane model is clearly not applicable.

First, consider a single-beam microscope, in which we illuminate the sample with

Yinm (P> @) = exp[ —1k(px’ + gy")] circ[(p* + ¢*)INA?], (1)

and detect only (p, ¢) = (0, 0) plane wave component of the returned beam.

Provided p is sufficiently narrowband, an incoming plane wave component will be
scattered only into ‘nearby’ plane waves, so that the obliquity factors coming and going
cancel, and we can write

I1=R[[" dpdg|Wnum(ps D*p(p, DIF(ps 9). (12)

The central value of the convolution equals the infinite integral of the product of the
transforms, and thus on the sample,

I = k¥*°R

- 2
[| 7 & x2naNAjinc(kNA|x — x'p(x)| (13)

where k = 2nNA® and jinc(x) = J,(x)/x. This shows that the microscope (up to
the detector) is a linear system in complex amplitude, with a PSF of 4,(x, y) =
K jinc[k(x* + )2 NA].

TYPE I AND TYPE 2 MICROSCOPES

We have so far described one implementation of a type 1 microscope, since a
d-function detector at the pupil can most easily be implemented with a large-area
coherent detector at the image plane. In our heterodyne system, a uniform reference
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beam Vy;,; = Yipum €Xp(— 2wy ) is introduced which is coherent with the received
beam, but with a frequency offset of 2f, ; as described in the previous section, this is
derived from a second beam reflected from another point on the sample. In this case,
under the same assumptions, the photocurrent is given by

1= R [[ Wi, ) exp[ — i@ + 1]
pupil

+ Wirum (25 ©*p(P5 @)] exp[—i(w + wb)f”z dpdg. (14)

Under the same assumptions as before, and using Rayleigh’s theorem, the a.c.
photocurrent is given by

2
L.(x) = an Rem jinc?(ENA|x — x’])p(x’)dzx’]. (15)

This is a convolution of p(x, y) with a jinc? function, which shows that this micro-
scope is of type 2 (i.e. confocal).

DEFOCUS RESPONSE

Besides the jinc® PSF, the most salient feature of the confocal microscope is depth
discrimination, or optical sectioning: the images of out-of-focus features are much
reduced in amplitude. In a conventional confocal microscope (with pinholes), this
property is easily understood: a scanned spot reflected from an out-of-focus feature
will produce a large spot in the image, so most of the light will miss the pinhole and
hence not contribute to the detected image.

Our heterodyne system exhibits depth discrimination as well, but only for differ-
ential defocus. Since both the reference and receive beams are reflected from the
sample, if the sample moves out of focus, both beams are affected identically and the
interference term Y, Y}, is still perfect, so the rf signal does not decrease. For
differential defocus (provided the reference beam remains in focus), the depth-
discrimination properties of this microscope are identical to those of the conventional
confocal system.

CALCULATION OF V(2)

If only the probe beam is displaced by a distance dz, each plane wave component
(p, g@) will be phase shifted by A¢p = 2k, 0z = 2kéz\/ (1 —p* — ¢). If it is assumed that
the sample is a perfect reflector, p(x, ¥) = 1, and that the pupil function is uniform,

the rf photocurrent is given by

2
L. = an Re [exp( — 20,1) ” exp[i2kz(1 — p* — ¢)?]dp dq] . (16)
pupil

Writing # = 2kz, sinf = NA, « = fsin*(6/2), and y = fcos?(0/2), this becomes

L. = 2nk*RRe [exp( — Wy, t)J 1 o drexp(if r)] 5 (17)

and therefore if V(2) = I,. (2)/1,.(0),

4 { asinf + sina(f cosf cosy — siny) }

FNA o

V(iz) =
+i[—acosf + sina(f cosOsiny + cos y)]

Fig. 4. Vertical response V'(z) of the confocal microscope, for NA = 05, 0-8, and 0-95: (a) magnitude,
(b) phase, (c) phase derivative d¢/dz.
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Figure 4(a), (b) and (c) shows the magnitude, phase, and phase derivative d¢/dz for
NA = 0-5, 0-8 and 0-95. Note the peculiar structure of the phase slope curve; this can
introduce errors into height measurements if care is not exercised.

For small NA, r is close to 1, so we neglect (r — 1) in order to simplify the integral:
then we find that

V(2) ~ sinc[2nz(1 — cos 0)/4] exp[ikz(1 + cos 0)]. (19)

This is a good approximation for the phase shift in the vicinity of focus for small NA,
with an error of about 0-2%, up to NA = 0-5; it swiftly becomes a poor approximation
for larger NA, which is the case of greatest interest; its error is — 5%, at 0-9 NA and
— 89, at 0-95.

LINE-SPREAD FUNCTION AND STEP RESPONSE

When imaging 1-D structures such as IC lines, it is important to know the line-
spread function (LLSF) and step response of the microscope. One way to obtain the
LSF is to treat the integral along the line as a convolution with a line delta function
3(x); in the frequency domain that is a multiplication by d(g), so that the line spread
is the inverse Fourier transform of a central cross-section of the 2-D transfer function.
For a type 1 microscope with a uniform pupil function H,(p, ¢) = circ[(p* + ¢°)/
NA?], this is a rectangle, so that the LSF is

l,(x) = 2sin(kxNA)/kx (20)

and the step response is
1 1.
sip(x) = > + ESl(kxNA). (21)

For the type 2 microscope, the transfer function is
Hy(p, 9) = 2/m)cos™"(0) — a(1 — 0°)'*] rect(a/2), (22)

where ¢ = (p* + ¢°)"?/(2NA) and the normalization has been chosen to make the
central value unity; the LSF [,(x) and step response s,(x) are not elementary,
and their calculation is treated in Appendix 1. Figure 5 is a plot of [,(x) and [, (x),
which shows the much improved side lobes and somewhat narrower main lobe
(3dB width about 309, smaller) of the type 2 system. Figure 6 is a plot of s,(x)
and s,(x), showing the greatly reduced edge ringing of the type 2 system. This
improvement is due to the continuity of the transfer function; instead of the abrupt
cutoff of the type 1 transfer function H,(p), H,(p) is tangential to the axis. The -
ultimate rolloff of the type 2 LSF /, goes as & * because of the cusp in H, at the origin
(see for example Bracewell, 1978).

It should be noted that the edge rise interval of the type 2 step response is not very -
different from that of the type 1—indeed the type 1 is slightly faster from 10-90. The
fundamental advantage of the type 2, especially in technological applications, is its
freedom from edge artefacts due to ringing. These artefacts can be very confusing,
especially when the sample has many sharp edges and small features. In IC metrology
applications, this problem is made even more difficult by the widespread use of
threshold algorithms for measuring critical dimensions; such algorithms are easily
fooled by artefacts of this kind.

LIMITS OF FOURIER OPTICS
As we have shown, the paraxial assumption made in the usual derivations of Fourier
optics is unnecessary; the formalism can be extended to large-NA imaging provided
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Fig. 7. Comparison of transfer functions: type 1 H, (p), type 2 H,(p), and F(p; 1-5). Note the smoothness
and good bandwidth utilization of F(p; 1-5) compared with the others.

the sample is not too rapidly varying and the lens is a Fourier transformer between
pupil and image planes (many lenses, such as camera lenses and infinity-corrected
microscope objectives, are optimized for such service). The Fourier approximation
breaks down when the convolution theorem fails to hold: in (12) we assumed this
theorem even when evanescent waves are involved. We recall that in (12) we used the
convolution of p(p, g) with V.. (2, ¢) as the reflected field; however, in propagating
from the sample to the detector, all evanescent components are lost, and the convolu-
tion theorem does not hold. If p(x, y) varies sufficiently rapidly, this effect will be
important enough to invalidate our approximation. If the sample exhibits large tilts,
then the true vectorial boundary conditions will not be uniformly similar to the
Dirichlet conditions used to derive the Rayleigh—-Sommerfeld integral formula (8) and
the various components of E and H will become mixed, in principle, invalidating the
scalar approach, although in practice the predicted response still usually agrees well
with experiment. Related to this is the defocus problem. If the sample goes in and out
of focus, the impulse response is no longer translationally invariant; this may also
indicate that the side walls of the peaks and valleys are no longer small enough to be
ignored. These problems will be addressed in a subsequent paper.

DIGITAL DECONVOLUTION

Since our heterodyne interference microscope produces simultaneous measurements
of optical amplitude and phase in digital form, it is perfectly legitimate (in the sense
of preserving information while introducing no new assumptions) to process the data
with a digital filter to obtain almost any transfer function desired, within the band-
width limit; hence it is natural to ask whether the type 2 transfer function H,( p) makes
optimal use of its extra bandwidth. Figure 7 shows H,(p) and H,(p), as well as a
function F(p; 1-5), a representative of a family of transfer functions chosen for good
bandwidth utilization; each curve of the family is constant to a frequency p,, where it
changes smoothly over to a raised cosine curve chosen to be tangential to the axis at
p = 2NA. These curves are denoted F(p; p,/NA), and their inverse transforms
(LSFs) by f(x; p,/NA) for clarity. All, except of course the rectangle F(p; 2), have
continuous first derivatives; this guarantees that the sidelobes of the LLSFs fall off at
least as fast as x 2 for large x. The adjustable parameter p, allows a trade-off of edge
sharpness against ripple and noise bandwidth. F(p; 0) is the familiar Von Hann
(‘Hanning’) window, which has excellent ripple properties but whose LSF has a main
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Fig. 8. Type 2 step responses 5, (x), compared with those of f(x; 0), f (x5 1°5), f (x; 2) (the response of a type
1 microscope operating at the second harmonic), and s, processed with a filter which was designed using
F(p; 1-5) and a window of length 2-254/NA.

lobe twice as wide as that of f(p; 2). As p, is increased, the main lobe narrows and the
ripple increases; the trade-off between edge sharpness and sensitivity to fine detail near
the edge (which may be masked by ringing) and the numerical properties of the filter
dictates how far it is possible to go. For data with a good signal-to-noise ratio, it is
profitable to go as far as F(p; 1-5); beyond this, ripple increases quite dramatically, and
the edge sharpness hardly changes.

The disadvantages of the type 2 response stem primarily from the cusp at p = 0; it
produces a positive, slowly decreasing (as x~2) tail in the LSF, and hence an x ™' tail
in the step response, which makes images of small structures somewhat more rounded
than they need be. This is a significant limitation in a phase-sensitive system, since in
order to perform a model-independent measurement of the height of a feature, the
feature must be wide enough for the edge artefacts to disappear in the middle. In
addition, although the ripple performance of the type 2 is quite good, its nearly
triangular transfer function is not the best way to achieve this; other functions with
better mid-frequency response achieve equivalent ripple with better edge definition
and no long tail.

Figure 8 compares the step responses s,(x) of the type 2 to those of f (x; 0), f(x; 1-5),
£ (x; 2) (the response of a type 1 microscope operating at the second harmonic), and s,
processed with a filter designed with F(p; 1-5) and then truncated to a width of nine
samples (projected down on the sample that is 2-25 //NA wide), with a Kaiser window,
f, = 45.

The improvement in edge sharpness with any of the f family over s, is immediately
apparent, and the trade-off of edge response against ripple is also easily seen. Note that,
compared with the others, the f(x; 0) and truncated f(x; 1-5) step responses settle
quickly to their final values; they are good choices for measuring the heights of narrow
structures. The improvement in the tails is a direct result of eliminating the cusp in
H,(p). Adjusting p, controls noise gain, while adjusting the number of samples
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Table 1. Abscissas and heights of the peaks, and total noise gain, of the
deconvolution filters used for resolution enhancement.

Peak Noise gain
by Dok value (dB)
0-0 0-818 1-29 0-8
0-4 1-075 1-77 3-2
0-8 1-321 2:68 5-9
13 1:555 4-83 9-5
1-5 1:726 9-64 136
16 1-781 13:43 15-5
1-7 1-837 20-60 179
1-8 1-892 37-70 21-4
1-9 1-946 10610 27-4

the edge speed versus ripple trade-off with a given noise gain. As p, increases, the edge
resolution approaches that of a type 1 microscope operating at the second harmonic,
allowing resolution equivalent to that of an ultraviolet microscope, while still using
visible light.

No one member of the F family is clearly best; the choice depends on the object of
interest. The design and use of these filters is so easy, requiring a total of 1 min to
design, compute, and use a new filter on a line scan, that it is entirely reasonable to use
different filters to accentuate different features in the same data set.

FILTER IMPLEMENTATION

The filtering is done non-recursively. The filter itself is generated by dividing the
chosen F(p) by H,(p), sampling, zero-padding, and taking the inverse discrete
Fourier transform (DFT). Aliasing error introduced by this procedure is minimized
by using about five times as many zeros as data points, and in any case F(p) is
somewhat arbitrary so minor departures are not objectionable. The resulting filter is
truncated to the desired length using a Kaiser window (a Kaiser parameter f, of 4-5
works well). The particular family F( p) was chosen for simplicity and good bandwidth
utilization, as mentioned above, but also to ensure that the digital filters are well
conditioned; the filters selectively amplify high spatial frequencies, exhibiting quite a
large peak near p = NA + p,/2, especially when p, is near 2NA. Table 1 lists the
positions and heights of the peaks and the total noise gains of filters for various values
of p,.

For p near 2NA, H,(2NA-¢) goes as &%, while F goes as ¢, which means that the
filter tends to zero like ¢'?. Although there is no singularity, the noise gain of the filter
becomes quite large as p, gets close to 2NA, because of the large peak; the choice of
po will be influenced by this consideration as well as by the ripple. The noise gain
per se is not necessarily the most important thing; as the singular case p, = 2NA is
approached, the peak becomes tall and narrow, causing the amplified noise increasingly
to resemble ringing, a particularly undesirable characteristic. Since our microscope
has such a good signal-to-noise ratio (better than 60 dB when laser noise is discounted),
we are free to use such strongly peaked filters; this is one of the key advantages of the
heterodyne interference microscope.

EXPERIMENTAL PERFORMANCE

The heterodyne interference microscope lives up to its potential. Figure 9 shows
some scan data taken with an early version of the microscope (four-beam system with
a lock-in time constant of 1 ms), with a numerical aperture of 0-9 and A = 514-5nm;
the sample was an 80 + 5-nm-thick aluminium film on aluminium. The diamond
symbols represent the raw experimental data, the solid line the theoretical response to
a 78-nm-high phase step. The phase data agree extremely well, although the amplitude
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Fig. 9. Single scan of 80 + 5-nm-tall Al step, taken with A = 514:5nm and NA = 09, compared with
theory for a 78-nm step: (a) amplitude, (b) phase.

data do not (for reasons as yet unknown). The other curves are the experimental data
filtered to F( p; 1-5) with a long filter (best sharpness at the expense of ripple) and with
the same filter truncated to a width of nine samples (2-:25 A//NA on the sample). These
filters are the same as those used in Fig. 7. As before, they improve the edge response
and increase the ripple, with the trade-off favouring the somewhat milder filter. The
edge sharpness (10-909%,) is 230 nm (0-45 1) for the raw data, 130nm (0-25 A) for the
milder filter, and 95 nm (0-18 ) for the long filter. The filtering has improved the edge
sharpness by a factor of two, even though the imaging conditions were apparently
not ideal. The discrepancy between the amplitude and phase data is not uncommon
experimentally for metal edges; this is an advantage of phase sensitivity.

Figure 10 shows a scan taken with the system as described in this paper. The sample
was a 2-GHz acoustic resonator, consisting of a periodic array of 0-4-um lines and
spaces on ST-cut quartz; the lines are 25-nm-thick aluminium. This sample, with its
strong amplitude contrast and relatively weak phase contrast, is a very stringent test
of the microscope’s performance; such samples confuse traditional phase contrast
schemes completely. In addition, any amplitude- to phase-modulation (AM-PM) con-
version in the electronics would create errors in the phase data. The filter used was
similar to the milder filter of Fig. 7. The agreement is excellent, both before and after
filtering, apart from the 5-nm-high ‘ears’ on the line; we think these are real, since the
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Fig. 10. Scan of a 2-GHz acoustic resonator, 0-4 um wide x 25 mm thick. A1 lines on ST-cut quartz, 0-8-um
pitch, before and after deconvolution, with theoretical plots for comparison. 4 = 514-5nm, NA = 0-95:
(a) amplitude, (b) phase.

lines were made by a lift-off process, and they are apparent from the square shape of
the raw data, compared to the theory. There is a slight lateral shift between the experi-
mental and theoretical curves, arising from fitting the two over the entire array rather
than this one line. The apparent asymmetry of the lines and spaces in the phase plot
is due to the much higher reflectivity of the line. In order for the phase to slew halfway
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to the substrate value, half the power in the returning beam must come from the
substrate; because the substrate signal is comparatively weak, this means that most of
the spot must be off the line, thus explaining the apparent asymmetry. In the filtered
data, the apparent spot size is smaller, so that the phase is able to slew further before
the edge of the next line is encountered.

CONCLUSIONS

The already good performance of the visible-light confocal microscope can be
improved by a factor of two in edge sharpness, and heights can be measured with very
high accuracy at high speed, by using a combination of heterodyne interferometry and
digital filtering. The filters are based on the scalar theory of microscope imaging, and
exhibit good performance even when used for submicrometre features. The agreement
between experiment and theory is extremely good, which allows confident interpret-
ation of scan data. Filtering the data is much easier and more flexible than attempting
to apodize the pupil function with physical filters or annular pupils, and the filters can
be tailored to the application easily and quickly. The flexibility and ease of use of this
system recommend its use in any situation where precise dimensional measurements
and the highest possible resolution are required.
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APPENDIX
Calculation of the line spread and step response

This appendix gives details of the calculation of the series representations for the
LSF and step response of a type 2 microscope, in order to develop the computationally
efficient and well-conditioned expressions for these functions which were used to
generate the theoretical curves in the preceding sections.

Beginning with the type 2 transfer function, given in Eq. (22), we set up the 1-D
inverse Fourier transform:

L(x) = (%)J; exp(iaé) rect(c/2)[cos '|a| — (1 — 6%)"?*|0|]do. (23)

Integrating by parts, all the boundary terms vanish, leaving

Li{x) = ( Ll é) '[01 sin(aé)(1 — ¢*)"*do. (24)
This integral is tabulated, both as a series and in closed form:
16 NA & () _ 8nNA

b(x) = T ,,,20(— L Cm+ DNCm+ 3!~ & H, (<), (23)
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where H, (x) is the first-order Struve function and ¢ = 2kxNA. The series was first
obtained by Rayleigh.

The series is moderately ill-conditioned, as is typical of power series for oscillatory
functions (especially ones which die away for large x); using Stirling’s formula we
estimate that the largest term (that for which m ~&/2 — 1) is about a, ~(8NA/
m) exp(&)/E?, whereas (since the transform is continuous) [, dies off at least as rapidly
as ¢ %, Its formal convergence is relatively good; we can estimate that m terms of the
Maclaurin series will be accurate to better than ¢ for x satisfying

1/2m

|kxNA| < msT (26)

Since this series will be inadequate for large £, we must seek an asymptotic series,
valid for &> 1.

The integral in Eq. (24) is ideal for the method of steepest descents. By transforming
the contour of integration in the ¢ plane from [0, 1] to the union of [0, 0 + 7R], [0 + iR,
1 +:R] and [1 + {R], and letting R go to infinity, the integral along the ‘crossbar’,
[0+ iR, 1+ iR] is exponentially small and so may be neglected. Writing { = i,
expanding the square roots in Taylor series about the finite endpoints of integration
and applying Watson’s lemma, we obtain the asymptotic series.

o 1] — 1N
L(x) ~ %[5_2 " ZO(_ 1),,,(2m + lézm(im 1)..:|

(cos¢ +sind)[ v 11 (dm+ DI(4m + 5)!

e N [ P 8"+ (2m + 2)152'“2] &)
(cos¢é —siné)[ & _yn@m — Dl(4m + 3)!!

8 /& [E‘o( Y 8+ 1(2m + 1)!52’”“]’

where we set (— 1)!! = 1.

This is quite a well-behaved series, yielding accurate values for quite small ¢.

A simple rule for the calculation of /,(x), with an absolute error less than 3 x 108
is to use the asymptotic series for |£| > 10, and a rational function approximation for
[£] < 10. In the asymptotic series, oscillatory terms up to ¢ > and monotonic terms
up to £~ should be kept. The rational function is:

6
Y G
b(x) ~ 50—, (28)
Z Dl_éZx
i=0
where the C; and D; are given in Table 2.

The rational function in Table 2 was obtained by using a fast Fourier transform
technique to generate a scaled Chebyshev polynomial fit to ,(x) in terms of &, then

Table 2. Coefficients of the rational function approximation to L (x);

-10 < ¢ < 10.
i C. D,
1-00000000000D + 00 5-890486138792D — 01
—5-65454175509D — 02 5-961925426661D — 03
1:27597452411D — 03 2:706903550000D — 05
—1-39150408948D — 05 6:226934890341D — 08

7-99755530925D — 08
—2-37047416995D — 10
2:91074747525D — 13

L= 00 I VA I W I )
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Table 3. Coefficients of the rational function approximation to s,(x), — 17 <{ < 17.

i & D,
1 7-40220263756681

— 1-4792667233478D — 2 5-49957770867583D — 2

2-4092520834109D — 4 1.85480554940277D — 4

— 2:0005193306711D — 6 3-43811730882858D — 7

1-0405064986847D — 8
—3-3692625377515D — 11
6-6748052987163D — 14
7-4519270720155D — 17
3-6149769084954D — 20

W=~ WUk W =O

transforming this into a ratio of two Chebyshev sums, and finally scaling and rewriting
numerator and denominator in standard form. The function values used in the fit were
obtained from the Maclaurin series, evaluated in double precision to eliminate the
effects of round-off error in computation of this single-precision approximation.

The resulting approximation is very nearly equiripple, and is much easier to
generate than a true equiripple approximation. Use of this rational function approxi-
mation is much more efficient than summing the Maclaurin series. For { = 10,
twenty-four terms of the Maclaurin series would be required to get this accuracy; here
there are only ten free parameters, and in addition, the rational representation is
well-conditioned.

Step response

The step response can be calculated by directly integrating the series represen-
tations; these operations can be justified rigorously since the power series alternates
(and hence is uniformly convergent) and the large-¢ series is obviously asymptotic
and so integratable term-by-term. Integrating the Maclaurin series with respect to
s[4, gives

(4nxNA L) +!

4 & .
* FEO(_ Y Gm s D@m + D@m + 3 (29)

B -

5;(x) =

A rational function approximation to s,(x) similar to that for [,(x) is given in
Table 3. Its maximum absolute error for & in (— 17, 17) is 5 x 10~°. The approximation
is

2i+ 1

8
1 Z Cix
s(x) x5+ = (30)
D.
P

x2i

We can integrate the monotonic terms of the asymptotic series by inspection; the
oscillatory terms are most conveniently obtained by recursion. The special form of
these terms, negative powers of ¢ multiplied by sines and cosines, is preserved under
integration by parts; integrating each term produces a boundary term and a term which
is identical (except for a numerical factor) to the next term in the series. Writing the
LSF and step response as

16 & A,siné + B, cosé

l P,
Z(x) \/Emgo ém+a

1 4 & A,siné+ B, cos¢ & G
5, (x) ~ 5 At ?ﬁmzo cm+a - mZ::O (2m + 1)62m+l

+ 3 G, em (31)

(32)
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Table 4. Coefficients of the asymptotic
series (32) for the step response of a type 2

microscope.

A,

~i
17/8
937/27
—33,627/2%°
—5,913,627/2"
307,435,839/2'8
36,889,462,845/2%
—2,508,416,581,635/2%°

NN W~ O| R

—38,161,423,775,989/2%°

(in this case, « = 2-5), we derive the recursion relations for A4, and B;,,:

4 ’
():Bo 0 = — 4

:rr+1 = —Am+l —(m—}-a)A:,, ;n+l = Bm+l+(m+a)B:ﬂ’

(33)

Because of the form of 4,, and B,,, B, = (—1)""'A4,,; Table 4 gives A,, for m < 9.
This series is somewhat poorer than the one for /,(x). To achieve an accuracy of
5 x 10~%, the patch point had to be moved out to ¢ = 17; for this accuracy, keep

oscillatory terms up to A; and monotonic terms up to C;.



